Two-photon fluorescent turn-on probes for highly efficient detection and profiling of thiols in live cells and tissues

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Congzhen Shen ◽  
Duoteng Zhang ◽  
Fang Xu ◽  
Yang Yang ◽  
Yi Tan ◽  
...  

Abstract Thiols are important units in amino acids such as cysteine and peptides like glutathione. Development of chemical sensors capable of precise detection of thiols is important in cancer diagnosis and therapy. We have developed novel two-photon fluorescent turn-on probes for selective detection of thiols. The probes displayed excellent sensitivity and low detection limits. The dual-purpose probes have been demonstrated to be suitable for simultaneous imaging and proteome profiling in live cells and tumor tissues. The unique turn-on design endows the probes with excellent selectivity toward thiols in vitro and in situ, and can be further developed to support a thiol-quantification assay.

2015 ◽  
Vol 51 (74) ◽  
pp. 14022-14025 ◽  
Author(s):  
Hongguang Li ◽  
Rongfeng Lan ◽  
Chi-Fai Chan ◽  
Lijun Jiang ◽  
Lixiong Dai ◽  
...  

A light-responsive antitumor agent, PtEuL, has been synthesized and evaluated for controlled cisplatin release by linear/two-photon excitation in vitro with concomitant turn-on Eu emission as a responsive traceable signal.


2021 ◽  
Vol 1157 ◽  
pp. 338394
Author(s):  
Xiao-Yue Tang ◽  
Yi-Ming Liu ◽  
Xiao-Lin Bai ◽  
Hao Yuan ◽  
Yi-Kao Hu ◽  
...  

The Analyst ◽  
2018 ◽  
Vol 143 (14) ◽  
pp. 3433-3441 ◽  
Author(s):  
Yanfei Zhao ◽  
Yun Ni ◽  
Liulin Wang ◽  
Chenchen Xu ◽  
Chenqi Xin ◽  
...  

We report the Fe(iii)-based complex TPFeS which acts as a novel ligand-displacement-based TP fluorogenic probe for the rapid detection of mercapto biomolecules both in vitro and in live cell/tissue/in vivo imaging.


2010 ◽  
Vol 298 (5) ◽  
pp. H1616-H1625 ◽  
Author(s):  
G. Bub ◽  
P. Camelliti ◽  
C. Bollensdorff ◽  
D. J. Stuckey ◽  
G. Picton ◽  
...  

Sarcomere length (SL) is an important determinant and indicator of cardiac mechanical function; however, techniques for measuring SL in living, intact tissue are limited. Here, we present a technique that uses two-photon microscopy to directly image striations of living cells in cardioplegic conditions, both in situ (Langendorff-perfused rat hearts and ventricular tissue slices, stained with the fluorescent marker di-4-ANEPPS) and in vitro (acutely isolated rat ventricular myocytes). Software was developed to extract SL from two-photon fluorescence image sets while accounting for measurement errors associated with motion artifact in raster-scanned images and uncertainty of the cell angle relative to the imaging plane. Monte-Carlo simulations were used to guide analysis of SL measurements by determining error bounds as a function of measurement path length. The mode of the distribution of SL measurements in resting Langendorff-perfused heart is 1.95 μm ( n = 167 measurements from N = 11 hearts) after correction for tissue orientation, which was significantly greater than that in isolated cells (1.71 μm, n = 346, N = 9 isolations) or ventricular slice preparations (1.79 μm, n = 79, N = 3 hearts) under our experimental conditions. Furthermore, we find that edema in arrested Langendorff-perfused heart is associated with a mean SL increase; this occurs as a function of time ex vivo and correlates with tissue volume changes determined by magnetic resonance imaging. Our results highlight that the proposed method can be used to monitor SL in living cells and that different experimental models from the same species may display significantly different SL values under otherwise comparable conditions, which has implications for experiment design, as well as comparison and interpretation of data.


2020 ◽  
Vol 56 (47) ◽  
pp. 6380-6383
Author(s):  
Qian Zhang ◽  
Yuzhe Xiao ◽  
Manqing Su ◽  
Peng Zhang ◽  
Yanling Gong ◽  
...  

A background-free fluorescent sensory receptor, with potential to undergo an in situ sensing strategy with new chromophores generated upon the detection event, was designed for the detection of glutathione.


2021 ◽  
Author(s):  
Xiaoyun Zhang ◽  
Jochen Spiegel ◽  
Sergio Martínez Cuesta ◽  
Santosh Adhikari ◽  
Shankar Balasubramanian

AbstractDNA–protein interactions regulate critical biological processes. Identifying proteins that bind to specific, functional genomic loci is essential to understand the underlying regulatory mechanisms on a molecular level. Here we describe a co-binding-mediated protein profiling (CMPP) strategy to investigate the interactome of DNA G-quadruplexes (G4s) in native chromatin. CMPP involves cell-permeable, functionalized G4-ligand probes that bind endogenous G4s and subsequently crosslink to co-binding G4-interacting proteins in situ. We first showed the robustness of CMPP by proximity labelling of a G4 binding protein in vitro. Employing this approach in live cells, we then identified hundreds of putative G4-interacting proteins from various functional classes. Next, we confirmed a high G4-binding affinity and selectivity for several newly discovered G4 interactors in vitro, and we validated direct G4 interactions for a functionally important candidate in cellular chromatin using an independent approach. Our studies provide a chemical strategy to map protein interactions of specific nucleic acid features in living cells.


2016 ◽  
Vol 52 (36) ◽  
pp. 6166-6169 ◽  
Author(s):  
Firoj Ali ◽  
Anila H. A. ◽  
Nandaraj Taye ◽  
Devraj G. Mogare ◽  
Samit Chattopadhyay ◽  
...  

New chemodosimetric reagent for the specific detection of hydrazine in physiological conditions as well as for the mapping of its in situ generation in live Hct116 and HepG2 cells by enzymatic transformations.


1991 ◽  
Vol 113 (1) ◽  
pp. 187-194 ◽  
Author(s):  
R P Mecham ◽  
L Whitehouse ◽  
M Hay ◽  
A Hinek ◽  
M P Sheetz

Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand.


Author(s):  
Robert J. Trachman ◽  
Adrian R. Ferré-D'Amaré

AbstractFluorescence turn-on aptamers,in vitroevolved RNA molecules that bind conditional fluorophores and activate their fluorescence, have emerged as RNA counterparts of the fluorescent proteins. Turn-on aptamers have been selected to bind diverse fluorophores, and they achieve varying degrees of specificity and affinity. These RNA–fluorophore complexes, many of which exceed the brightness of green fluorescent protein and their variants, can be used as tags for visualizing RNA localization and transport in live cells. Structure determination of several fluorescent RNAs revealed that they have diverse, unrelated overall architectures. As most of these RNAs activate the fluorescence of their ligands by restraining their photoexcited states into a planar conformation, their fluorophore binding sites have in common a planar arrangement of several nucleobases, most commonly a G-quartet. Nonetheless, each turn-on aptamer has developed idiosyncratic structural solutions to achieve specificity and efficient fluorescence turn-on. The combined structural diversity of fluorophores and turn-on RNA aptamers has already produced combinations that cover the visual spectrum. Further molecular evolution and structure-guided engineering is likely to produce fluorescent tags custom-tailored to specific applications.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 53 ◽  
Author(s):  
Sun Young Park ◽  
Eugeine Jung ◽  
Jong Seung Kim ◽  
Sung-Gil Chi ◽  
Min Hee Lee

Human NAD(P)H:quinone oxidoreductase 1 (hNQO1) is overexpressed in cancer cells and associated with the drug resistance factor of cancer. The objective of this work is the development of fluorescent probes for the efficient detection of hNQO1 activity in cancer cells, which can be employed for the cancer diagnosis and therapeutic agent development. Herein, we report naphthalimide-based fluorescent probes 1 and 2 that can detect hNQO1. For hNQO1 activity, the probes showed a significant fluorescence increase at 540 nm. In addition, probe 1, the naphthalimide containing a triphenylphosphonium salt, showed an enhanced enzyme efficiency and rapid detection under a physiological condition. The detection ability of probe 1 was superior to that of other previously reported probes. Moreover, probe 1 was less cytotoxic during the cancer cell imaging and readily provided a strong fluorescence in hNQO1-overexpressed cancer cells (A549). We proposed that probe 1 can be used to detect hNQO1 expression in live cells and it will be applied to develop the diagnosis and customized treatment of hNQO1-related disease.


Sign in / Sign up

Export Citation Format

Share Document