Humor and leadership style

Author(s):  
Janet Holmes ◽  
Meredith Marra

AbstractDrawing on authentic workplace interactions, this paper examines the ways in which effective leaders use humor as a discursive resource to construct particular aspects of leadership style. The conventional wisdom in leadership studies suggests that humor is an important tool for “good” leaders who inspire and challenge their subordinates. The management studies literature suggests a basic distinction between a traditional transactional style, which is rule-driven and task focused, and a more favored transformational style, where leaders encourage creativity and innovation, and are characterized as inspirational. Using data collected in a range of New Zealand organizations, this paper explores and illustrates the wide range of functions served by humor, and the ways in which humor contributes to aspects of the construction of leadership styles. Our analysis supports recent proposals that many effective leaders combine aspects of both transactional and transformational styles of leadership.

2020 ◽  
Author(s):  
Guilherme de Sena Brandine ◽  
Andrew D. Smith

AbstractDNA methylation, characterized by the presence of methyl group at cytosines in a DNA sequence, is an important epigenomic mark with a wide range of functions across diverse organisms. Whole genome bisulfite sequencing (WGBS) has emerged as the gold standard to interrogate cytosine methylation. Accurately mapping WGBS reads to a reference genome allows reconstruction of tissue methylomes at single-base resolution. Algorithms used to map WGBS reads often encode the four-base DNA alphabet with three letters by reducing two bases to a common letter.We introduce another bisulfite mapping algorithm (abismal), based on the novel idea of encoding a four-letter DNA sequence as two letters, one for purines and one for pyrimidines. We show theoretically that this encoding benefits from higher uniformity and specificity when subsequences are selected from reads for filtration. In our implementation, this leads to a decreased mapping time relative to the three-letter encoding. We demonstrate, using data from multiple public studies, that the abismal software tool improves mapping accuracy at significantly lower mapping times compared to commonly used mappers, with most notable improvements observed in samples originating from the random priming post-bisulfite adapter tagging protocol.


2018 ◽  
Vol 17 (5) ◽  
pp. 325-337 ◽  
Author(s):  
Hojjat Borna ◽  
Kasim Assadoulahei ◽  
Gholamhossein Riazi ◽  
Asghar Beigi Harchegani ◽  
Alireza Shahriary

Background & Objective: Neurodegenrative diseases are among the most widespread lifethreatening disorders around the world in elderly ages. The common feature of a group of neurodegenerative disorders, called tauopathies, is an accumulation of microtubule associated protein tau inside the neurons. The exact mechanism underlying tauopathies is not well-understood but several factors such as traumatic brain injuries and genetics are considered as potential risk factors. Although tau protein is well-known for its key role in stabilizing and organization of axonal microtubule network, it bears a broad range of functions including DNA protection and participation in signaling pathways. Moreover, the flexible unfolded structure of tau facilitates modification of tau by a wide range of intracellular enzymes which in turn broadens tau function and interaction spectrum. The distinctive properties of tau protein concomitant with the crucial role of tau interaction partners in the progression of neurodegeneration suggest tau and its binding partners as potential drug targets for the treatment of neurodegenerative diseases. Conclusion: This review aims to give a detailed description of structure, functions and interactions of tau protein in order to provide insight into potential therapeutic targets for treatment of tauopathies.


BMJ Open ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. e047007
Author(s):  
Mari Terada ◽  
Hiroshi Ohtsu ◽  
Sho Saito ◽  
Kayoko Hayakawa ◽  
Shinya Tsuzuki ◽  
...  

ObjectivesTo investigate the risk factors contributing to severity on admission. Additionally, risk factors of worst severity and fatality were studied. Moreover, factors were compared based on three points: early severity, worst severity and fatality.DesignAn observational cohort study using data entered in a Japan nationwide COVID-19 inpatient registry, COVIREGI-JP.SettingAs of 28 September 2020, 10480 cases from 802 facilities have been registered. Participating facilities cover a wide range of hospitals where patients with COVID-19 are admitted in Japan.ParticipantsParticipants who had a positive test result on any applicable SARS-CoV-2 diagnostic tests were admitted to participating healthcare facilities. A total of 3829 cases were identified from 16 January to 31 May 2020, of which 3376 cases were included in this study.Primary and secondary outcome measuresPrimary outcome was severe or nonsevere on admission, determined by the requirement of mechanical ventilation or oxygen therapy, SpO2 or respiratory rate. Secondary outcome was the worst severity during hospitalisation, judged by the requirement of oxygen and/orinvasive mechanical ventilation/extracorporeal membrane oxygenation.ResultsRisk factors for severity on admission were older age, men, cardiovascular disease, chronic respiratory disease, diabetes, obesity and hypertension. Cerebrovascular disease, liver disease, renal disease or dialysis, solid tumour and hyperlipidaemia did not influence severity on admission; however, it influenced worst severity. Fatality rates for obesity, hypertension and hyperlipidaemia were relatively lower.ConclusionsThis study segregated the comorbidities influencing severity and death. It is possible that risk factors for severity on admission, worst severity and fatality are not consistent and may be propelled by different factors. Specifically, while hypertension, hyperlipidaemia and obesity had major effect on worst severity, their impact was mild on fatality in the Japanese population. Some studies contradict our results; therefore, detailed analyses, considering in-hospital treatments, are needed for validation.Trial registration numberUMIN000039873. https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000045453


2021 ◽  
Vol 22 (5) ◽  
pp. 2754
Author(s):  
Naila Qayyum ◽  
Muhammad Haseeb ◽  
Moon Suk Kim ◽  
Sangdun Choi

Thioredoxin-interacting protein (TXNIP), widely known as thioredoxin-binding protein 2 (TBP2), is a major binding mediator in the thioredoxin (TXN) antioxidant system, which involves a reduction-oxidation (redox) signaling complex and is pivotal for the pathophysiology of some diseases. TXNIP increases reactive oxygen species production and oxidative stress and thereby contributes to apoptosis. Recent studies indicate an evolving role of TXNIP in the pathogenesis of complex diseases such as metabolic disorders, neurological disorders, and inflammatory illnesses. In addition, TXNIP has gained significant attention due to its wide range of functions in energy metabolism, insulin sensitivity, improved insulin secretion, and also in the regulation of glucose and tumor suppressor activities in various cancers. This review aims to highlight the roles of TXNIP in the field of diabetology, neurodegenerative diseases, and inflammation. TXNIP is found to be a promising novel therapeutic target in the current review, not only in the aforementioned diseases but also in prolonged microvascular and macrovascular diseases. Therefore, TXNIP inhibitors hold promise for preventing the growing incidence of complications in relevant diseases.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Daisuke Kase ◽  
Keiji Imoto

Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels were first reported in heart cells and are recently known to be involved in a variety of neural functions in healthy and diseased brains. HCN channels generate inward currents when the membrane potential is hyperpolarized. Voltage dependence of HCN channels is regulated by intracellular signaling cascades, which contain cyclic AMP, PIP2, and TRIP8b. In addition, voltage-gated potassium channels have a strong influence on HCN channel activity. Because of these funny features, HCN channel currents, previously called funny currents, can have a wide range of functions that are determined by a delicate balance of modulatory factors. These multifaceted features also make it difficult to predict and elucidate the functional role of HCN channels in actual neurons. In this paper, we focus on the impacts of HCN channels on neural activity. The functions of HCN channels reported previously will be summarized, and their mechanisms will be explained by using numerical simulation of simplified model neurons.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1671
Author(s):  
Ráchel Sgallová ◽  
Edward A. Curtis

Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.


2021 ◽  
Author(s):  
Wisely Chua ◽  
Si En Poh ◽  
Hao Li

The human skin is our outermost layer and serves as a protective barrier against external insults. Advances in next generation sequencing have enabled the discoveries of a rich and diverse community of microbes - bacteria, fungi and viruses that are residents of this surface. The genomes of these microbes also revealed the presence of many secretory enzymes. In particular, proteases which are hydrolytic enzymes capable of protein cleavage and degradation are of special interest in the skin environment which is enriched in proteins and lipids. In this minireview, we will focus on the roles of these skin-relevant microbial secreted proteases, both in terms of their widely studied roles as pathogenic agents in tissue invasion and host immune inactivation, and their recently discovered roles in inter-microbial interactions and modulation of virulence factors. From these studies, it has become apparent that while microbial proteases are capable of a wide range of functions, their expression is tightly regulated and highly responsive to the environments the microbes are in. With the introduction of new biochemical and bioinformatics tools to study protease functions, it will be important to understand the roles played by skin microbial secretory proteases in cutaneous health, especially the less studied commensal microbes with an emphasis on contextual relevance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amruta Tendolkar ◽  
Aaron F. Pomerantz ◽  
Christa Heryanto ◽  
Paul D. Shirk ◽  
Nipam H. Patel ◽  
...  

The forewings and hindwings of butterflies and moths (Lepidoptera) are differentiated from each other, with segment-specific morphologies and color patterns that mediate a wide range of functions in flight, signaling, and protection. The Hox gene Ultrabithorax (Ubx) is a master selector gene that differentiates metathoracic from mesothoracic identities across winged insects, and previous work has shown this role extends to at least some of the color patterns from the butterfly hindwing. Here we used CRISPR targeted mutagenesis to generate Ubx loss-of-function somatic mutations in two nymphalid butterflies (Junonia coenia, Vanessa cardui) and a pyralid moth (Plodia interpunctella). The resulting mosaic clones yielded hindwing-to-forewing transformations, showing Ubx is necessary for specifying many aspects of hindwing-specific identities, including scale morphologies, color patterns, and wing venation and structure. These homeotic phenotypes showed cell-autonomous, sharp transitions between mutant and non-mutant scales, except for clones that encroached into the border ocelli (eyespots) and resulted in composite and non-autonomous effects on eyespot ring determination. In the pyralid moth, homeotic clones converted the folding and depigmented hindwing into rigid and pigmented composites, affected the wing-coupling frenulum, and induced ectopic scent-scales in male androconia. These data confirm Ubx is a master selector of lepidopteran hindwing identity and suggest it acts on many gene regulatory networks involved in wing development and patterning.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Denise S Walker ◽  
William R Schafer

Mechanosensation is central to a wide range of functions, including tactile and pain perception, hearing, proprioception, and control of blood pressure, but identifying the molecules underlying mechanotransduction has proved challenging. In Caenorhabditis elegans, the avoidance response to gentle body touch is mediated by six touch receptor neurons (TRNs), and is dependent on MEC-4, a DEG/ENaC channel. We show that hemichannels containing the innexin protein UNC-7 are also essential for gentle touch in the TRNs, as well as harsh touch in both the TRNs and the PVD nociceptors. UNC-7 and MEC-4 do not colocalize, suggesting that their roles in mechanosensory transduction are independent. Heterologous expression of unc-7 in touch-insensitive chemosensory neurons confers ectopic touch sensitivity, indicating a specific role for UNC-7 hemichannels in mechanosensation. The unc-7 touch defect can be rescued by the homologous mouse gene Panx1 gene, thus, innexin/pannexin proteins may play broadly conserved roles in neuronal mechanotransduction.


2008 ◽  
Vol 1 ◽  
pp. 3-16 ◽  
Author(s):  
Neil Beagrie

The creation, management and use of digital materials are of increasing importance for a wide range of activities. Much of the knowledge base and intellectual assets of institutions and individuals are now in digital form. The term digital curation is increasingly being used for the actions needed to add value to and maintain these digital assets over time for current and future generations of users. The paper explores this emerging field of digital curation as an area of inter-disciplinary research and practice, and the trends which are influencing its development. It analyses the genesis of the term and how traditional roles relating to digital assets are in transition. Finally it explores some of the drivers for curation ranging from trends such as exponential growth in digital information, to "life-caching", digital preservation, the Grid and new opportunities for publishing, sharing, and re-using data. It concludes that significant effort needs to be put into developing a persistent information infrastructure for digital materials and into developing the digital curation skills of researchers and information professionals. Without this, current investment in digitisation and digital content will only secure short-term rather than lasting benefits.


Sign in / Sign up

Export Citation Format

Share Document