Acidic Functionalized Nanobohemite: An Active Catalyst for Methyl Ester Production

Author(s):  
Shokoufe Hosseini ◽  
G. R. Moradi ◽  
Kiumars Bahrami

Abstract In the biodiesel production, acidic catalysts are ideally suitable for reacting with different oil sources at various free acid levels. On the other hand, the nanocatalysts can easily be propagated in the reaction medium and provide more accessible active sites for reaction. The aim of this work was to synthesize an acidic nanocatalyst based on boehmite nanoparticles then studying it to biodiesel production from soybean oil. Up to now, no reports were found on biodiesel production by this catalyst. After the synthesis and characterization of the catalyst, using response surface methodology (RSM), the optimized conditions for transesterification were 4.87 wt.% for catalyst dosage, 13:1 for the molar ratio of methanol to oil, 60 °C for reaction temperature, and 3 h for reaction time. At the optimal point, the production yield was 99.8 %. After six consecutive use of the catalyst, the yield dropped slightly (88 %). Consequently, the catalyst can be employed efficiently several runs in the production process.

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 427 ◽  
Author(s):  
Muhammad Awais ◽  
Sa’ed A Musmar ◽  
Faryal Kabir ◽  
Iram Batool ◽  
Muhammad Asif Rasheed ◽  
...  

Biodiesel is a renewable fuel usually produced from vegetable oils and animal fats. This study investigates the extraction of oil and its conversion into biodiesel by base-catalyzed transesterification. Firstly, the effect of various solvents (methanol, n-hexane, chloroform, di-ethyl ether) on extraction of oil from non-edible crops, such as R. communis and M. azedarach, were examined. It was observed that a higher concentration of oil was obtained from R. communis (43.6%) as compared to M. azedarach (35.6%) by using methanol and n-hexane, respectively. The extracted oils were subjected to NaOH (1%) catalyzed transesterification by analyzing the effect of oil/methanol molar ratio (1:4, 1:6, 1:8 and 1:10) and varying temperature (20, 40, 60 and 80 °C) for 2.5 h of reaction time. M. azedarach yielded 88% and R. communis yielded 93% biodiesel in 1:6 and 1:8 molar concentrations at ambient temperature whereas, 60 °C was selected as an optimum temperature, giving 90% (M. azedarach) and 94% (R. communis) biodiesel. The extracted oil and biodiesel were characterized for various parameters and most of the properties fulfilled the American Society for Testing and Materials (ASTM) standard biodiesel. The further characterization of fatty acids was done by Gas Chromatography/Mass Spectrometer (GC/MS) and oleic acid was found to be dominant in M. azedarach (61.5%) and R. communis contained ricinoleic acid (75.53%). Furthermore, the functional groups were analyzed by Fourier Transform Infrared Spectroscopy. The results suggested that both of the oils are easily available and can be used for commercial biodiesel production at a cost-effective scale.


2016 ◽  
Vol 27 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Baskar Thangaraj ◽  
Zhaohua Jia ◽  
Lingmei Dai ◽  
Dehua Liu ◽  
Wei Du

Abstract Lipase-catalyzed biodiesel production is being the object of extensive research due to the demerits of chemical based catalytic system. Lipase immobilized on Fe3O4 magnetic nanoparticles has the integrated advantages of traditional immobilized lipase and free lipase for its rather fast reaction rate and easy separation. It has been demonstrated that free lipase NS81006 has potential in catalyzing the alcoholysis of renewable oils for biodiesel preparation. In this study, Fe3O4 magnetic nanoparticles functionalized with organosilane compounds like (3-aminopropyl)triethyloxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane) MPTMS were used as carriers for lipase immobilization. Lipase NS81006 was covalently bound to the organosilane-functionalized magnetic nanoparticles by using glutaraldehyde cross-linking reagent. A biodiesel yield of 89% and 81% could be achieved by lipase immobilized on APTES-Fe3O4 and MPTMS-Fe3O4 magnetic nanoparticles respectively under optimized conditions of oil to methanol molar ratio 1:3 with three step addition of methanol, reaction temperature 45°C and reaction time duration 12 h. The lipases immobilized on magnetic nanoparticles could be recovered easily by external magnetic field for further use.


2019 ◽  
Vol 8 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Xinyu Ge ◽  
Giancarlo Cravotto

Abstract The factors that influence microwave-assisted biodiesel production reactions have been analyzed in this investigation. The studied parameters included microwave (MW) power, irradiation time, and reactor pressure. The response surface method was used to optimize the reaction conditions. The conversion for the 6:1 methanol/oil molar ratio and 1% catalyst ranged from 68.4% to 96.71%. The optimized conditions were found to be 138 s of MW irradiation at 780 W and 7 bar pressure. The conversion at this point was 97.82%. Biodiesel yield increased at higher radiation times (90–130 s) and pressures (5–7 bar). Results show that MW power and irradiation time have significant effects at the 1% level, whereas pressure had significant effects at the 5% level on biodiesel production in this range. The major properties of the palm oil biodiesel produced herein have met the requirements of the EN 14214 methyl ester standard.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Elisa d'Avila Cavalcanti-Oliveira ◽  
Priscila Rufino da Silva ◽  
Alessandra Peçanha Ramos ◽  
Donato Alexandre Gomes Aranda ◽  
Denise Maria Guimarães Freire

The process of biodiesel production by the hydroesterification route that is proposed here involves a first step consisting of triacylglyceride hydrolysis catalyzed by lipase from Thermomyces lanuginosus (TL 100L) to generate free fatty acids (FFAs). This step is followed by esterification of the FFAs with alcohol, catalyzed by niobic acid in pellets or without a catalyst. The best result for the enzyme-catalyzed hydrolysis was obtained under reaction conditions of 50% (v/v) soybean oil and 2.3% (v/v) lipase (25 U/mL of reaction medium) in distilled water and at 60∘C; an 89% conversion rate to FFAs was obtained after 48 hours of reaction. For the esterification reaction, the best result was with an FFA/methanol molar ratio of 1:3, niobic acid catalyst at a concentration of 20% (w/w FFA), and 200∘C, which yielded 92% conversion of FFAs to soy methyl esters after 1 hour of reaction. This study is exceptional because both the hydrolysis and the esterification use a simple reaction medium with high substrate concentrations.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Sunil Kumar Narwal ◽  
Nitin Kumar Saun ◽  
Priyanka Dogra ◽  
Ghanshyam Chauhan ◽  
Reena Gupta

A novel thermotolerant lipase fromBacillus aeriuswas immobilized on inexpensive silica gel matrix. The immobilized lipase was used for the synthesis of biodiesel using castor oil as a substrate in a solvent free system at 55°C under shaking in a chemical reactor. Several crucial parameters affecting biodiesel yield such as incubation time, temperature, substrate molar ratio, and amount of lipase were optimized. Under the optimized conditions, the highest biodiesel yield was up to 78.13%. The characterization of synthesized biodiesel was done through FTIR spectroscopy,1H NMR spectra, and gas chromatography.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5506
Author(s):  
Daniel Carreira Batalha ◽  
Márcio José da Silva

Nowadays, the synthesis of biofuels from renewable raw materials is very popular. Among the various challenges involved in improving these processes, environmentally benign catalysts compatible with an inexpensive feedstock have become more important. Herein, we report the recent advances achieved in the development of Niobium-containing heterogeneous catalysts as well as their use in routes to produce biodiesel. The efficiency of different Niobium catalysts in esterification and transesterification reactions of lipids and oleaginous raw materials was evaluated, considering the effect of main reaction parameters such as temperature, time, catalyst load, and oil:alcohol molar ratio on the biodiesel yield. The catalytic performance of Niobium compounds was discussed considering the characterization data obtained by different techniques, including NH3-TPD, BET, and Pyr-FT-IR analysis. The high catalytic activity is attributed to its inherent properties, such as the active sites distribution over a high specific surface area, strength of acidity, nature, amount of acidic sites, and inherent mesoporosity. On top of this, recycling experiments have proven that most Niobium catalysts are stable and can be repeatedly used with consistent catalytic activity.


2013 ◽  
Vol 2 (3) ◽  
pp. 169-173 ◽  
Author(s):  
N.A. Handayani ◽  
H. Santosa ◽  
M. Sofyan ◽  
I. Tanjung ◽  
A. Chyntia ◽  
...  

Nowadays, energy that used to serve all the needs of community, mainly generated from fossil (conventional energy). Terrace in energy consumption is not balanced with adequate fossil fuel reserves and will be totally depleted in the near future. Indonesian Government through a Presidential Decree No. 5 year 2006 mandates an increased capacity in renewable energy production from 5 percent to 15 percent in 2025. C. pentandra seed oil has feasibility as a sustainable biodiesel feedstock in Indonesia. The aim of this paper was to investigate biodiesel production from ceiba petandra seed oil using naturally potassium hydroxide catalyst. Research designs are based on factorial design with 2 levels and 3 independent variables (temperature, reaction time and molar ratio of methanol to oil). According to data calculation, the most influential single variable is molar ratio of methanol to oil. Characterization of biodiesel products meet all the qualifications standardized by SNI 04-7182-2006. Keywords: biodiesel, kapok seed oil, c. pentandra, green technology


2020 ◽  
Vol 997 ◽  
pp. 93-101
Author(s):  
Mohd Nurfirdaus Mohiddin ◽  
A.A. Saleh ◽  
Amarnadh N.R. Reddy ◽  
Sinin Hamdan

Heterogeneous catalyst has been viewed as a promising catalyst for biodiesel production. This study employed Turritella terebra (TT) shell as a source for synthesizing heterogeneous CaO catalyst for biodiesel production via transesterification by utilizing chicken fat as a feedstock. The TT shell CaO catalyst was characterized and its catalytic performance was studied. The spectrographic methods that include FTIR, SEM, PSA, and BET-BJH were employed for characterization of the synthesized CaO. The TT shell CaO catalyst optimally produced chicken fat biodiesel (CFB) with reaction parameters at catalyst concentration of 4 wt%, chicken fat to methanol molar ratio of 1:12, reaction temperature of 60°C, and reaction time of 90 min. The optimal yield was 94.03% and the TT shell CaO catalyst still yield 79.19% of CFB on the fifth cycle of reaction. This study has implied that TT shell is a feasible and attractive renewable source of heterogeneous CaO catalyst for biodiesel production.


Author(s):  
Khaled Belkacemi ◽  
Mirela Cristea Vlad ◽  
Safia Hamoudi ◽  
Joseph Arul

The microaerial oxidation of an aqueous solution of lactose to lactonionic acid (LBA) over the heterogeneous bimetallic catalyst Bi-Pd supported on mesoporous SBA-15 material was carried out in an agitated semi-batch reactor in alkaline medium within the pH range of 7 to 9.The present work focused on the synthesis and characterization of the bimetallic catalyst as well as optimization of the reaction operating conditions. To this purpose, the effect of both active metals loading on the support, metal/lactose ratio, reaction pH and dissolved oxygen concentration on the oxidation performances was examined at a very mild temperature of 65 oC.The bimetallic catalyst 1.02%Pd, 0.64%Bi/SBA-15, (Bi/Pd molar ratio of 0.3) showed the highest activity (96 % lactose conversion) and 100 % selectivity towards the targeted LBA product. Furthermore, the formulated catalyst proved to be stable in the reaction medium as both metals leaching was insignificant. Based on XRD and XPS analyses, it is suggested that the metals constituting the bimetallic catalyst active sites assemble into an intermetallic alloy having Bi1.75Pd stoichiometry.


2021 ◽  
Vol 9 (8) ◽  
pp. 1678
Author(s):  
Laura Morales-Luna ◽  
Abigail González-Valdez ◽  
Beatriz Hernández-Ochoa ◽  
Roberto Arreguin-Espinosa ◽  
Daniel Ortega-Cuellar ◽  
...  

Giardia lamblia is a single-celled eukaryotic parasite with a small genome and is considered an early divergent eukaryote. The pentose phosphate pathway (PPP) plays an essential role in the oxidative stress defense of the parasite and the production of ribose-5-phosphate. In this parasite, the glucose-6-phosphate dehydrogenase (G6PD) is fused with the 6-phosphogluconolactonase (6PGL) enzyme, generating the enzyme named G6PD::6PGL that catalyzes the first two steps of the PPP. Here, we report that the G6PD::6PGL is a bifunctional enzyme with two catalytically active sites. We performed the kinetic characterization of both domains in the fused G6PD::6PGL enzyme, as well as the individual cloned G6PD. The results suggest that the catalytic activity of G6PD and 6PGL domains in the G6PD::6PGL enzyme are more efficient than the individual proteins. Additionally, using enzymatic and mass spectrometry assays, we found that the final metabolites of the catalytic reaction of the G6PD::6PGL are 6-phosphoglucono-δ-lactone and 6-phosphogluconate. Finally, we propose the reaction mechanism in which the G6PD domain performs the catalysis, releasing 6-phosphoglucono-δ-lactone to the reaction medium. Then, this metabolite binds to the 6PGL domain catalyzing the hydrolysis reaction and generating 6-phosphogluconate. The structural difference between the G. lamblia fused enzyme G6PD::6PGL with the human G6PD indicate that the G6PD::6PGL is a potential drug target for the rational synthesis of novels anti-Giardia drugs.


Sign in / Sign up

Export Citation Format

Share Document