DEM study of the angle of repose and porosity distribution of cylindrical particles with different lengths

Author(s):  
Heng Zhou ◽  
Xu Tian ◽  
Xingyu Guo ◽  
Mingyin Kou ◽  
Shengli Wu ◽  
...  

Abstract Effect of the length of cylindrical particle on repose angle and porosity of a pile was numerically studied using discrete element method. The variation of repose angle and porosity with coefficient of sliding and rolling friction were also discussed. The results shown that compared with sphere particle, the bottom size of cylindrical pile is smaller, while the height of cylinder pile is larger and the heap is steeper. With the increase of the length of cylinder, the contour line of the pile becomes steep, and the angle of repose increases. The repose angle shows a positive correlation with coefficient of sliding and rolling friction. The porosity increases with the increase of the length of cylinders. The trends of porosity are basically consist with that of repose angle, and with increase of friction coefficient, the average porosity increases.

2021 ◽  
Vol 37 (4) ◽  
pp. 605-614
Author(s):  
Lingxin Geng ◽  
Jiewen Zuo ◽  
Fuyun Lu ◽  
Xin Jin ◽  
Chenglong Sun ◽  
...  

Highlights The static friction coefficient and rolling friction coefficient of oat seeds were calibrated by the discrete element method. Two representative oat varieties were selected. The hollow cylinder method and sidewall collapse method were used together to reduce the test error. Abstract . Hulless and shelled oat are two types of oat with major differences in physical appearance. To study the contact parameters between the two different oat seed types, these parameters were delineated with the discrete element method and graphic image processing technology. Using plexiglass as the contact material, the experiments used two different angle of repose measurement methods—hollow cylinder and collapse sidewall devices, to perform bench and simulation experiments on the two different oats. Under different measurement methods, bench experiments measured the angles of repose of the two oat seed types at 33.19°, 33.82° and 22.45°, 23.57°; the static friction coefficient and rolling friction coefficient were the experimental factors, and the angle of repose was the experimental indicator in the simulation. The steepest climbing experiment determined the optimal range of the experimental factor, and the regression equation between the static friction coefficient, rolling friction coefficient and angle of repose was established by a quadratic orthogonal rotation combination experiment. Finally, the angles of repose measured by the bench experiment with the two different measurement methods were treated as target values, the coefficient of static friction and the coefficient of rolling friction were solved; the coefficient of static friction between hulless oats was 0.36, and the coefficient of rolling friction between hulless oats was 0.052; the coefficient of static friction between shelled oats was 0.24, and the coefficient of rolling friction between shelled oats was 0.036. The obtained contact parameters between seeds were input into EDEM, the simulation and bench experiment results were verified. The difference between the simulation results and the actual values was within 3%. The angle of repose of oats after calibration was close to the actual situation, and the calibration results had high reliability and provided a referencefor the measurement of contact parameters between other agricultural crop seeds. Keywords: Calibration, Contact parameters, Discrete element method, Oat.


2016 ◽  
Vol 61 (4) ◽  
pp. 1795-1804
Author(s):  
Heng Zhou ◽  
Zhiguo Luo ◽  
Tao Zhang ◽  
Yang You ◽  
Haifeng Li ◽  
...  

Abstract Rolling friction representing the energy dissipation mechanism with the elastic deformation at the contact point could act directly on particle percolation. The present investigation intends to elucidate the influence of rolling friction coefficient on inter-particle percolation in a packed bed by discrete element method (DEM). The results show that the vertical velocity of percolating particles decreases with increasing the rolling friction coefficient. With the increase of rolling friction coefficient, the transverse dispersion coefficient decreases, but the longitudinal dispersion coefficient increases. Packing height has a limited effect on the transverse and longitudinal dispersion coefficient. In addition, with the increase of size ratio of bed particles to percolation ones, the percolation velocity increases. The transverse dispersion coefficient increases with the size ratio before D/d<14. And it would keep constant when the size ratio is greater than 14. The longitudinal dispersion coefficient decreases when the size ratio increases up to D/d=14, then increases with the increase of the size ratio. External forces affect the percolation behaviours. Increasing the magnitude of the upward force (e.g. from a gas stream) reduces the percolation velocity, and decreases the dispersion coefficient.


2020 ◽  
Vol 63 (1) ◽  
pp. 189-198
Author(s):  
Leno J. Guzman ◽  
Ying Chen ◽  
Hubert Landry

Abstract. The development of highly efficient seed metering is required to meet the demands of modern seeding equipment. The discrete element method (DEM) was used to simulate metering of seeds with a fluted roller meter. This approach was chosen due to its capability to accurately represent granular material flow. The contact model selected for the DEM simulation was the linear rolling resistance model. Angle of repose experimental tests and simulations were performed to calibrate the rolling friction coefficient for peas. The calibrated value for the rolling friction coefficient was 0.016. A 192 mm cross-section of an air cart seed roller and housing was defined as the domain of the simulation. Sensitivity analysis showed that simulated mass flow rates were not sensitive to the selected damping coefficients (0.2, 0.5, and 0.8). Sensitivity indicator values varied between -0.049 and 0.088 for the range of damping coefficients and roller speeds studied. The simulated geometry of the seed meter and housing resulted in a steady flow of seeds, with discharged mass increasing linearly. The simulated mass flow rates were 34.0, 72.3, 110.4, 147.3, and 182.0 g s-1 for roller speeds of 10, 20, 30, 40, and 50 rpm, respectively. An experiment was performed to validate the simulation results. The predicted mass flow rate values of the simulation were within 10 g s-1 of the experimental results, with the largest relative error being 16.5%. Keywords: DEM, Damping, Metering, Peas, Rolling friction coefficient, Seed, Simulation.


2021 ◽  
Vol 37 (6) ◽  
pp. 1169-1179
Author(s):  
Wenli Xiao ◽  
Hui Chen ◽  
Xingyu Wan ◽  
Mengliang Li ◽  
Qingxi Liao

HighlightsThe relationship between the angle of repose and compound fertilizer particle size distribution and sphericity was revealed.The range of the rolling friction coefficient obtained by different modeling was calibrated by the golden section method.Scanning modeling required 80% of the rolling friction coefficient of spherical modeling to reflect actual motion.The relative error of scanning modeling (7.91%) was better than that of spherical modeling (30.84%).Abstract. The discrete element method (DEM) is widely used to simulate the behavior of granular materials. The accurate establishment of the particle model has a great influence on the accuracy of the simulation. Most of the existing discrete element simulations of granular compound fertilizers use spherical modeling without considering the shape or particle size distribution. To compare the simulation accuracy of spherical modeling (spherical particles with equivalent diameters) and scanning modeling (a three-dimensional model of fertilizers was obtained by a scanner and then automatically filled by EDEM2020 software) on compound fertilizer discharge, three kinds of granular compound fertilizers (Changqingshu, Xinshidai, and Munvhong) were selected as the research objects. The characterization parameters of fertilizer shape and fluidity were measured. Principal component analysis and Pearson correlation analysis were used to analyze the influence of the compound fertilizer characterization parameters on the angle of repose. The results showed that the particle shape and particle size distribution of compound fertilizer were the main factors affecting its angle of repose. Through the golden section method and a single-factor experiment, the rolling friction coefficients of the three granular fertilizers under the two granular modeling methods for spherical modeling and scanning modeling were determined. The results showed that the rolling friction coefficient when using scanning modeling to approximate the actual angle of repose was approximately 80% of that when using the spherical modeling method. The influence of different modeling methods on the total rotational kinetic energy and the formation of the angle of repose was discussed. For the same fertilizer, the total rotational kinetic energy was greater in spherical modeling than in scanning modeling, and the formation time of the angle of repose was longer in scanning modeling than in spherical modeling. The results of an external tank wheel fertilization simulation and bench test showed that considering the scanning modeling of fertilizer shape and particle size distribution, the fertilization variation coefficient obtained from the simulation test was closer to that of the bench test. This research helps to better understand the influence of particle shape and particle size distribution on DEM simulations and provides references for discrete element modeling of other granular fertilizers. Keywords: Compound fertilizer, Modeling method, Shape, Simulated flow characteristics, Size distribution.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 605
Author(s):  
Xiulong Cao ◽  
Zehua Li ◽  
Hongwei Li ◽  
Xicheng Wang ◽  
Xu Ma

The discrete element method (DEM) for modeling the behavior of particulate material is highly dependent on the use of appropriate and accurate parameters. In this study, a seed metering DEM simulation was used to measure, calibrate, and verify the physical and interactional parameters of rapeseed. The coefficients of restitution and static friction between rapeseeds and three common materials (aluminum alloy, acrylic, and high-density polyethylene) were measured using free drop and sliding ramp tests, respectively. The angle of repose was determined using a hollow cylinder experiment, which was duplicated using a DEM simulation, to examine the effects of static and rolling friction coefficients on the angle of repose. Response surface optimization was performed to determine the optimized model parameters using a Box–Behnken design test. A metering device was made with three materials, and rapeseed seeding was simulated at different working speeds to verify the calibrated parameters. The validation results showed that the relative errors between the seed metering model and experiments for the single qualified seeding, missed seeding, and multiple seeding rates were −0.15%, 3.29%, and 5.37%, respectively. The results suggest that the determined physical and interactional parameters of rapeseed can be used as references for future DEM simulations.


2020 ◽  
Author(s):  
Jinrong CHAI ◽  
Shifeng WANG ◽  
Zihao ZHOU ◽  
Guohua LI ◽  
Xunan LIU

Abstract The friction coefficient of coal is the main factor influencing the results of discrete element simulation. In this study, the friction coefficient of coal was determined using a self-made testing instrument for measuring the static friction coefficient and an automatic cylinder lifting device on the basis of discrete element simulation, image processing, and orthogonal testing. The correlations between the angle of repose of coal particles, the rolling friction coefficient between coal particles, and the rolling friction coefficient between the coal particles and stainless steel were evaluated by linear regression analysis. Results indicated that the dependent variable (angle of repose of coal particles) was linearly correlated to the two independent variables (rolling friction factor between the coal particles, as well as the rolling friction factor between the coal and the stainless steel). The angle of repose of the coal particles was largely affected by the rolling friction coefficient between the coal particles but not by the rolling friction coefficient between the coal particle and stainless steel. Moreover, the static friction coefficient between the coal particles was 0.53, and that between the coal particle and the stainless steel was 0.38. The rolling friction coefficient between the coal particles was 0.048, and that between the coal particles and the stainless steel was 0.03. These friction coefficients were used to simulate the bottomless cylinder test of the coal particles. The angle of repose in the simulation test was 30.77°, whereas that in the real test was 31.47°; the relative error was 2.22%. Therefore, no significant difference in the results was indicated between the simulation test and the real test, verifying the effectiveness of the method used to determine friction coefficients. The aforementioned technique can be applied to determine the friction coefficient of lump coal particles.


2011 ◽  
Vol 2-3 ◽  
pp. 894-899
Author(s):  
Qin Liang Li ◽  
Bin Zhao ◽  
Bo Wang ◽  
Bang Chun Wen

Discrete element method (DEM) is applied to study the granular accumulation problem. Using Herz-Mindlin (no slip) model to simulate particles and container model is also established by software. When the container elevates, the process of granular falling and collision can be ob-served. Detailed analysis of that the impact of static and rolling friction coefficient for particles - particles, particles - flat on angle of repose is accomplished. The variation law is also further val-idated from the energy point of view. The results show that rolling friction has a greater impact on angle of repose than static friction, and rolling friction coefficient among particles play the more prominent role in the two kinds of rolling friction. The research method and results provide a the-oretical reference for the granular movement and DEM analysis.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Huazhi Chen ◽  
Shengyuan Jiang ◽  
Rongkai Liu ◽  
Weiwei Zhang

Particles can move directionally in a trough with finlike asperities under longitudinal vibrations. Here, we present an analysis of the particle conveyance mechanism and the influence of the asperity shape on the particle conveyance capacity by employing a numerical simulation based on the discrete element method (DEM). A dynamic-static matching method is proposed to characterize the three microcontact parameters in the simulation: the restitution coefficient, static friction coefficient, and rolling friction coefficient. The simulation shows that the asymmetric force induced by the finlike asperities and its cumulative effect over time lead to the particle directional conveyance. The conveyance velocity increases with increasing vibration time and is related to the median coordination number. The asperity height and slope inclination angles determine the trough shape and distance between two asperities directly. An undersized or oversized distance reduces the steady conveyance velocity. We find the optimal distance to be between one and two particle diameters.


Author(s):  
Donghyeok Park ◽  
Chun Gu Lee ◽  
Doee Yang ◽  
Daehyun Kim ◽  
Joon Yong Kim ◽  
...  

Abstract Purpose The discrete element method (DEM) can be used in agricultural fields such as crop sowing, harvesting, and crop transportation. Nevertheless, modeling complex crops as appropriately shaped particles remains challenging. The modeling of particles and the calibration of input parameters are important for simulating the realistic behaviors of particles using the DEM. Methods In this study, particle models representing the morphological characteristics and size deviations of garlic cloves were proposed. Additionally, the coefficients of friction were analyzed as the contact parameters of the particles based on the heap formation experiments and simultations of the swing-arm method using 150 garlic cloves. Results The simulation results were analyzed that the residual number of particles, a bulk property that can be measured simply in the experiment, is related to the coefficients of friction. In the heap formation experiments with low particle counts, the bulk properties were more clearly differentiated by the residual number of particles than the angle of repose. Moreover, the bulk properties similar to the actual garlic could not be expressed as a spherical particle model. Thus, an equation for predicting the residual number of particles was derived for the non-spherical garlic clove particle model. Five sets of coefficients of friction were presented using the prediction equation, and all the simulation results were close to the actual residual number of particles and angle of repose of the garlic. Conclusions Although the sizes of garlic cloves have a wide distribution, appropriate inter-particle contact parameters could be predicted. Therefore, the calibration process of the DEM can be shortened using the proposed prediction equation for the residual number of particles with non-spherical particles.


2021 ◽  
Vol 3 (4) ◽  
pp. 894-906
Author(s):  
Hangqi Li ◽  
Guochen Zhang ◽  
Xiuchen Li ◽  
Hanbing Zhang ◽  
Qian Zhang ◽  
...  

The Manila Clam is an important economic shellfish in China’s seafood industry. In order to improve the design of juvenile Manila Clam seeding equipment, a juvenile clam discrete element method (DEM) particle shape was established, which is based on 3D scanning and EDEM software. The DEM contact parameters of clam-stainless steel, and clam-acrylic were calibrated by combining direct measurements and test simulations (slope sliding and dropping). Then, clam DEM simulation and realistic seeding tests were carried out on a seeding wheel at different rotational speeds. The accuracy of the calibrated clam DEM model was evaluated in a clam seeding verification test by comparing the average error of the variation coefficient between the realistic and simulated seeding tests. The results showed that: (a) the static friction coefficients of clam-acrylic and clam-stainless steel were 0.31 and 0.23, respectively; (b) the restitution coefficients of clam-clam, clam-acrylic, and clam-stainless steel were 0.32, 0.48, and 0.32, respectively. Furthermore, the results of the static repose angle from response surface tests showed that when the contact wall was acrylic, the coefficient rolling friction and static friction of clam-clam were 0.17 and 1.12, respectively, and the coefficient rolling friction of clam-acrylic was 0.20. When the contact wall was formed of stainless steel, the coefficient rolling friction and static friction of clam-clam were 0.33 and 1.25, respectively, and the coefficient rolling friction of clam-stainless steel was 0.20. The results of the verification test showed that the average error between the realistic and simulated value was <5.00%. Following up from these results, the clam DEM model was applied in a clam seeding simulation.


Sign in / Sign up

Export Citation Format

Share Document