scholarly journals Mechanical performance of abrasive sandpaper made with palm kernel shells and coconut shells

2021 ◽  
Vol 30 (1) ◽  
pp. 28-37
Author(s):  
Hameed Sa’ad ◽  
Bamidele D. Omoleyomi ◽  
Elijah A. Alhassan ◽  
Ezekiel O. Ariyo ◽  
Taiwo Abadunmi

Abstract The use of agricultural wastes as additives for other valuable products has been the focus of many research efforts because of their availability, inherent properties, and environmental friendliness. Palm kernel shells (PKS) and coconut shells (CNS) are agricultural solid end products obtainable from the cracking of their fruit nuts. In this study, PKS and CNS were used to produce abrasive sandpaper following established procedures. The mechanical properties of the sandpaper produced were established. Material for application in abrasive operations must exhibit maximum hardness and compressive strength, minimal wear rate, water absorption, and density. Results showed a 20% and 25% increment in specimen hardness values for PKS and CNS respectively in samples with polyester resin content weight composition range of 7.8–22.2% based on sieve size of 250 μm. Similarly, 29.23% and 32.44% increment for PKS and CNS respectively was recorded for a sieve size of 420 μm. Samples with a high percentage of binder exhibit better wear characteristics for both PKS and CNS for the investigated parameters. As the percentage weight composition of PKS and CNS samples increases in the abrasive sandpaper composites, the water absorption properties decrease for both 250 μm and 420 μm sieve sizes. Samples compressive strength increases as the percentage weight composition of binder increases over a range of 7.8 to 22.2% for both 250 μm and 420 μm sieve sizes studied. Similarly, as the percentage weight composition of PSK and CNS increases, the sample exhibit high density for both sieve sizes. These characteristics affirmed the suitability of the abrasive composites made with PKS and CNS for frictional applications.

Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5475
Author(s):  
Agnė Kairytė ◽  
Sylwia Członka ◽  
Renata Boris ◽  
Sigitas Vėjelis

In the current study, rigid polyurethane foam (PUR) was modified with 10–30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics—i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion—was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10–20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.


2021 ◽  
Vol 6 ◽  
pp. 9
Author(s):  
Ayu Miftachul Jan'ah ◽  
Teguh Endah Saraswati

<p>Artikel ini berisi tentang sintesis <em>carbon nanotubes</em> (CNT) dari material tanaman sebagai upaya untuk mengurangi penggunaan bahan kimia dan pemanfaatan bahan terbarukan. CNT telah berhasil disintesis dari prekursor tanaman seperti cangkang sawit, minyak sawit, bambu, kayu karet, jerami padi, batok kelapa, serat kelapa dan minyak kelapa. Sifat unik dari CNT menyebabkan penelitiannya terus dilakukan dan banyak diterapkan dalam berbagai aplikasi salah satunya material komposit. CNT yang telah disintesis dapat dikompositkan dengan <em>polyaniline</em> (PANI) untuk memperoleh konduktivitas, sifat optik, dan kekuatan mekanik yang lebih unggul. </p><p><strong><em>Review: Synthesis of Carbon Nanotubes (CNT) from Renewable Materials for Carbon Nanotube-Polyaniline Composites. </em></strong>This article contains the synthesis of carbon nanotubes (CNT) from plant materials in an effort to reduce the use of chemicals and the use of renewable materials. CNT has been successfully synthesized from plant precursors such as palm kernel shells, palm oil, bamboo, rubberwood, rice straw, coconut shells, coconut fiber, and coconut oil. The unique properties of CNT have led to continuous research and many applications in various applications, one of which is composite materials. The synthesized CNTs can be composite with polyaniline (PANI) to obtain superior conductivity, optical properties, and mechanical strength.</p>


Author(s):  
O.J Oladiran ◽  
D.R Simeon ◽  
O.A Olatunde

Excessive usage of materials is causing fast depletion of natural stone deposit. This study therefore investigates the performance of palm kernel shells (PKS) and periwinkle shells (PS) as alternatives coarse aggregates in concrete. Forty cubes and 40 cylinders each were produced with PKS and PS as replacement materials for granite. Series of tests were conducted to determine their performances. The results showed that, compressive and tensile strengths decrease as PKS and PS content increases, which allow specific area to increase, thus requiring more cement paste to bond effectively with the shells. The result also revealed that for all curing ages, palm kernel shell concrete (PKSC) have lower compressive strength and tensile strength than periwinkle shell concrete (PSC). The compressive strength and tensile strength of the 28-day PKSC with 100% replacement were 4.33 N/mm2 and 3.68 N/mm2 respectively; that of PSC at 100% replacement were 5.89 N/mm2 and 4.95 N/mm2 respectively; and granite concrete without any replacement were 25.11 N/mm2 and 11.74 N/mm2 respectively. It is concluded that both PKSC and PSC satisfied the compressive strength and tensile strength requirement of light weight concrete, although PS has better gradation and bonding to cement than PKS. This implies that PS is best suited as replacement for granite in lightweight concrete than PKS. It is recommended that the mix-ratio should be altered to get higher values of compressive strength; and both PKS and PS should be used for lightweight concretes.


2018 ◽  
Vol 7 (3.9) ◽  
pp. 65 ◽  
Author(s):  
Hanizam Awang ◽  
Adebayo Adeshina Dauda ◽  
Wenny Arminda

The research project aimed to investigate the effect of palm kernel shell (PKS) on the mechanical strength and durability of foamed concrete at the level of 10% to 60%. The samples were designed and prepared having a dry density of 1600 kg/m3with a binder to filler ratio of 1:1.2. Hardened foamed concrete samples were subjected to air cured and tested at the age of 7, 14, 28, 56 and 90 days. Mechanical performance of the PKS foamed concrete was assessed in term of its compressive strength. Durability properties namely water absorption and vacuum porosity were investigated. The result shows that the addition of PKS to lightweight foamed concrete up to 30% significantly improve the mechanical properties and the durability of the foamed concrete.  


2019 ◽  
Vol 7 (2) ◽  
pp. 102-108
Author(s):  
Yulin Patrisia ◽  
Topan Eka Putra

This study aimed to determine the influence of peat water on the mechanical properties of the paving block (compressive strength and water absorption) using coconut shell waste and fly ash as raw material. The background of the research were the lack utilization of fly ash, preparation for the handling and utilization of fly ash from power station at Pulang Pisau and Tumbang Kajuei (under construction), and the utilization of coconut shell to be more effective and economical. Paving block specimens were immersed in peat water to determine the effect of peat water and the rest were immersed in plain water. This experiment used fly ash as a partial replacement of cement and 2% coconut shell as a partial replacement of fine aggregate. The results of the analysis showed that: (a) Paving block using fly ash and coconut shells which were immersed in plain water experienced the increase in compressive strength and the decrease in water; (b) Paving block using fly ash and coconut shells soaked in peat water showed that by the increase of age, compressive strength was decrease and water absorption was increase; (c) The compressive strength of paving block specimens immersed in plain water and peat water showed relatively similar values at 7 and 28 days age, (d). Water absorption in paving block specimens soaked both in plain water and peat water showed relatively similar values at 7 days age, but at 28 days age the specimens immersed in peat water had greater water absorption.


2020 ◽  
Vol 32 (5) ◽  
pp. 303-309
Author(s):  
Damilola O. Oyejobi ◽  
Mohammed Jameel ◽  
N.H.R. Sulong ◽  
Sabur A. Raji ◽  
H. Adebayo Ibrahim

2020 ◽  
Vol 7 (1) ◽  
pp. 7-16
Author(s):  
Esau Abekah Armah ◽  
Hubert Azoda Koffi ◽  
Josef K Ametefe Amuzu

This study explore the possibility of using waste ground palm kernel (GPK) shells as partial replacement of cement in concrete using mechanical destructive method has been studied. The palm kernel shells were in two forms: the GPK ordinary shells and shells subjected to incomplete combustion (i.e. the GPK “fuel” shells. In the preparation of the concrete specimens the mix ratio was 1: 2: 4 (cement: sand: stone) by weight and The replacement percentage was 0%, 20%, 30%, 40%, 50% and 60% respectively.  Concrete specimen were molded in both cubic and cylindrical form and its impact on the mechanical properties such as workability, compressive strength and flexural strength using destructive test method were studied. The cubic specimen were tested at 7, 28 and 60 days whiles the cylindrical specimen were tested at 7 and 28 days. Results of physical and chemical analyses suggest that GPK “fuel” shells have acceptable cementitious properties whiles GPK ordinary shells does not. Generally, the compressive and flexural strengths of concrete containing GPK shells decrease as the replacement percentage increases. However, the values of these properties increase as the period of curing increases. The optimum level of GPK shells replacement is 20% for the ordinary shells and 30% for the “fuel” shells considering compressive strength at 28 days for the cubic samples. For the flexural strength on the cylindrical specimen, up to 60% replacement of cement by GPK shells cured for 28 days has acceptable flexural strength. In spite of the findings that the GPK ordinary shells do not have cementitious properties, the mechanical properties on such concretes can be used in low strength constructions as pavements, walk ways and non structural domestic work at a lower cost than using cement.


Managing plastics waste is a global challenge that challenges the health of our ecosystem due to their high rate of production and non-biodegradability. However, it is important to handle PWs properly to curtail the environmental emissions associated with their incineration and dumping into landfills. The world's building industry is influenced by looking at the expense of construction materials and the required raw materials to manufacture them with the supporting climate that is rising at an unprecedented pace. The recycling of plastic waste into new useful building construction products will be a great advantage In this analysis, the shredded PET waste gathered from the recycling center was heated to 230 0C and used as a binder for the complete substitution of cement with a river sand aggregate for the manufacture of polymer interlocking / paving stones. The physical characteristics and mechanical performance of the aggregate materials and PET polymer concrete (including their distribution of particle size, silt , clay and dust content, relative stiffness, water absorption, porosity, flexural and compressive strength) were tested on various PET waste: 100%, 90%, 70%, 50% and 30% sand mixing percentages. The results showed that the produced interlocks from 30% PET and 70% river sand (3:7) achieved higher density, flexural, and compressive strength than the other combination percentages. The least strength and porosity were exhibited by the polymer concrete produced with 100 % PET. The compressive strength of the PET polymer concrete produced with 30 % PET waste composition was higher than that of cement concrete at 28 days curing. Based on the test results, PET polymer concrete at 30 % PET replacement can be used for interlocking tiles / paving stones due to its strength, low water absorption, and eco-friendliness, especially in water-logged areas. This prospect of interlocking tile production using polyethylene terephthalate (PET) waste and sand would not only minimise the cost of building production, but will only act as a waste diversion to mitigate environmental emissions caused by plastic waste disposal


2019 ◽  
Vol 1 (02) ◽  
pp. 68-75 ◽  
Author(s):  
Heny Purwanti ◽  
Titik Penta Artiningsih

Coarse aggregates commonly used in concrete are coarse natural aggregates, which are broken stones or gravel. Continuous rock exploration can cause environmental damage or even more severe ecosystem damage. Therefore it is necessary to substitute an alternative aggregate. Indonesia has the second largest oil palm plantation (Elaeis guineensis Jacq) in the world after Malaysia. Plantations are renewable resources, so palm oil is also potential to be used as an alternative to diesel fuel. Palm kernel shells are palm oil industry wastes which are generally underutilized. Palm kernel shells can be used as an alternative to coarse aggregate, because oil palm shells have the advantage of being hard, tough and good durability due to the high content of lignin and silica dioxide (SiO2), such as hard wood, but low cellulose content so it is not easy rot. The strength of the palm oil shell is quite good. In addition, the aggregate gradation also fulfills the requirements without a breakdown process, which has a thickness of 2-4 mm and a maximum width of 15 mm. The volume of oil palm shells is + 600 kg/m3, so it will produce significant light weight concrete. The concrete studied was concrete with a coarse aggregate of tenera palm kernel shells, with fine aggregates of natural sand, and a Portland Composite Cement (PCC), but the PCC content was reduced and replaced by FA which varied from 0%, 5%, 10 %, 15%, 20 and 25%. Concrete also added superplasticizer (SP). SP is used to reduce water use, because the shell absorbs water. SP levels also vary, namely 0%, 1%, and 1.2%. The weight of the volume of concrete with various levels of fly ash and SP is 1700-1800 kg/m3, so it can be classified as lightweight concrete. Increased FA levels will increase compressive strength, but only up to 10%, after which the strength decreases. Compressive strength of specimens with SP 0% and FA 10% is 17.92 MPa, for SP levels of 1% and FA 10% is 22.15 MPa, while for SP levels of 1.2% and FA 10% is 19.35 MPa . So that it can be concluded that the palm shell as bio-material (renewable resources) can be used as a substitute for natural coarse aggregates. The optimum fly ash level is 10%, and to reduce water use SP 1%. The use of oil palm shells as a substitute for gravel means reducing the waste of the palm oil industry, while reducing rock exposures. In addition, in Indonesia there are many areas where there are no rock sources while oil palm plantations are quite extensive.


Sign in / Sign up

Export Citation Format

Share Document