scholarly journals Performance Evaluation of Different Optical Amplifiers in Spectrum Sliced Free Space Optical Link

2019 ◽  
Vol 41 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Aditi Thakur ◽  
Shaina Nagpal

Abstract Free space optics (FSO) is well-competent and premier technology to cater the high speed services in different geographical areas such as hilly areas and inter building network. In this paper, we successfully demonstrated the spectrum sliced wavelength division multiplexed FSO system. In order to make system bandwidth efficient, frequency spacing of 75 GHz is taken among the wavelength division multiplexing (WDM) channels. Carrier spectrum broadening is achieved for spectrum slicing through the nonlinearity called self-phase modulation. Moreover, requirement of multiple laser sources is eliminated. However, in conventional WDM systems, n numbers of lasers are needed to generate n WDM channels. To strengthen the signal in this FSO system, three optical amplifiers are scrutinized such as erbium-doped fiber amplifier (EDFA), semiconductor optical amplifier (SOA) and Raman amplifier in terms of Q-factor and bit error rate (BER). Results revealed that EDFA is best amplifier in proposed SS-WDM-FSO system.

High speed networks face several challenges in order to meet desired Quality of Service (QOS). In order to increase network speed with significant reduction in Bit Error Rate (BER), new design techniques have to be deployed in high speed networks. In this paper, basics of high speed networks along with Dense Wavelength Division Multiplexing(DWDM) network issues and challenges have been discussed. Modulation schemes and amplifier configurations are also summarized. Investigations on applicability of modulation schemes for DWDM network architecture have been performed with various hybrid optical amplifier configurations. The link configuration consists of 56 channels at speed of 15Gbps.It is observed that Non Return to Zero (NRZ) scheme gives better performance in terms of Quality-factor (Q-f) and BER. The network parameters are further improved using various hybrid optical amplifier configurations. It is observed that NRZ scheme with Erbium Doped Fiber Amplifier (EDFA) hybrid amplifier configuration has improved the quality factorof system as compared to other hybrid amplifier configurations


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Suraj Jain ◽  
Chakresh Kumar

AbstractThis paper aims to analyze the performance of FBG 60 channel wavelength-division multiplexing system using different optical amplifiers namely RAMAN, erbium-doped fiber amplifier (EDFA) and semiconductor optical amplifier (SOA) separately at 10 Gbps data rate up to a fiber length of 280 km. Based upon the results, the performance of the three amplifiers has been compared on the basis of multiple performance parameters. It is seen that EDFA simulates good results in terms of bit error rate (BER) up to a fiber distance of approximately 80 km and Q factor up to a distance of approximately 90 km among all the three amplifiers. However, power received is least in EDFA. RAMAN amplifier provides a better Q factor after the fiber distance of approximately 90 km and a better BER after the fiber distance of approximately 80 km compared to the other three amplifiers. SOA shows better results in terms of power received up to a fiber distance of approximately 100 km. RAMAN amplifier provides better output power after a distance of 100 km. Eye diagrams and power spectrums of the network with different optical amplifiers has also been analyzed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kavitha Thandapani ◽  
Maheswaran Gopalswamy ◽  
Sravani Jagarlamudi ◽  
Naveen Babu Sriram

Abstract Free Space Optical (FSO) communication has evolved as a feasible technique for wireless implementations which offers higher bandwidth capacities over various wavelengths and refers to the transmission of modulated visible beams through atmosphere in order to communicate. Wavelength Division Multiplexing (WDM) is a technology that multiplexes numerous carrier signals onto single fiber using nonidentical wavelengths and enables the efficiency of bandwidth and expanded data rate. Multiple Input Multiple Output (MIMO) is implemented to improve the quality and performance of free space optical communication in various atmospheric conditions. In this paper, a WDM-based FSO communication system is being implemented that benefits from MIMO which receives multiple copies of the signal at receiver that are independent and analyzed for various streams of data in MIMO i.e. 2 × 2, 4 × 4, 8 × 8. Various factors like BER, Quality Factor are analyzed for the WDM-based FSO communication with MIMO using the OptiSystem for various data streams of MIMO under different atmospheric conditions.


2019 ◽  
Vol 40 (4) ◽  
pp. 341-346
Author(s):  
Kulwinder Singh ◽  
Karan Goel ◽  
Kamaljit Singh Bhatia ◽  
Hardeep Singh Ryait

Abstract Different fiber amplifiers such as semiconductor optical amplifier, erbium-doped fiber amplifier and erbium ytterbium-co-doped fiber amplifier (EYCDFA) are investigated for 16×40 GB/s wavelength division multiplexing system. Various performance parameters including Q-factor, bit error rate, jitter, eye opening and eye closure are observed and analyzed. It is reported that EYCDFA is a better choice among the tested amplifiers. The proposed system is also investigated in terms of transmission distance.


Author(s):  
S. Semmalar ◽  
S. Malarkkan

Proposed the EDFA and EYCDFA power booster (Erbium Doped Fiber Amplifier- Erbium ytterbium co doped fiber amplifier) with quad pumping for high speed and multi wavelength services in an optical communication. The proposed EDFA and EYCDFA power booster with WDM(Wavelength division multiplexing) simulated by dual forward and Backward pumping, Dual-backward pumping, Tri-single forward and dual backward pumping and Quadsingle forward and tri-backward pumping with respect to Pump power and fiber Length. The parameters Input Optical power, Output Optical power, Forward Signal power, Backward Signal power measured and determined the speed of transmission in all types of pumping methods. From that the proposed EDFA- ans EYCDFA power booster with WDM quad pumping is the best suitable for secured high speed optical telecommunication systems. The results shown in Quad pumping Output optical power is maximum 25.2dB and optimum spectral forward Signal power is 30.5dBm and very less spectral optical backward signal power of -25.4dBm with Length 5m


2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Garima Arora ◽  
Sanjeev Dewra

AbstractThis paper presents the comparison of various modulation formats for 64×10 Gbps dense wavelength division multiplexing system using Raman–erbium-doped fiber amplifier optical amplifier with 100 GHz interval. We evaluate the suitability of various data formats like return-to-zero (RZ) raised cosine (RC), RZ rectangular (Rect), non-return-to-zero (NRZ) RC and NRZ-Rect for an optical transmission link. The results have been carried out by evaluating the value of quality factor, bit error rate (BER) and average opening of an eye. It is found that using NRZ-Rect data format, the signal can travel up to transmission length of 234 km with acceptable BER (1.10e


2019 ◽  
Vol 40 (4) ◽  
pp. 429-433 ◽  
Author(s):  
Kamal Kishore Upadhyay ◽  
Saumya Srivastava ◽  
N. K Shukla ◽  
Sushank Chaudhary

Abstract Free space optical (FSO) communication systems are gaining high popularity from the last decade due to its various advantages such as no license spectrum, low-cost implementation etc. In this work, 160 Gbps data is transmitted over 8 km FSO link by adopting alternate mark inversion (AMI), wavelength division multiplexing (WDM) and polarization division multiplexing (PDM) schemes. The results are reported in terms of Q factor, bit error rate, signal to noise ratio, total received power and eye diagrams.


2014 ◽  
Vol 23 (01) ◽  
pp. 1450007 ◽  
Author(s):  
Khadijah Ismail ◽  
P. Susthitha Menon ◽  
Sahbudin Shaari ◽  
Abang Annuar Ehsan ◽  
Hesham Bakarman ◽  
...  

The incorporation of cascaded and hybrid-type optical amplifiers into the optical fiber link is advantageous for the purpose of achieving wide gain bandwidth of multi-wavelength coarse wavelength division multiplexing (CWDM) systems. Different amplifiers whose operating gain region differ from each other are connected in cascade, thus providing better gain performance as the overall gain is combined and flattened over a larger spectrum. In this paper, the effect of the crossover of the uniform gain of the semiconductor optical amplifier (SOA) and the nonuniform gain of erbium-doped fiber amplifier (EDFA) is analyzed using an in-line cascaded SOA-SOA and an in-line hybrid SOA-EDFA configuration in the amplification of an 8-channels CWDM system obtained from the simulation using Optisystem software. It was observed that the cascaded SOA-SOA produces higher gain of 25 dB and wider gain bandwidth of 60 nm compared to the hybrid SOA-EDFA configuration with maximum gain of only 24 dB and 40 nm bandwidth. In addition, better bit-error-rate (BER) performance which is within the typical values in optical fiber communication is also achieved from the cascaded SOA topology. Wider gain bandwidth obtained with the SOA-SOA configuration would permit the transmission of video application at 1551 nm in the proposed Ethernet CWDM system transmitted at 100 Mb/s data rates.


Sign in / Sign up

Export Citation Format

Share Document