scholarly journals Water infiltration in an aquifer recharge basin affected by temperature and air entrapment

2017 ◽  
Vol 65 (3) ◽  
pp. 222-233 ◽  
Author(s):  
Sébastien Loizeau ◽  
Yvan Rossier ◽  
Jean-Paul Gaudet ◽  
Aurore Refloch ◽  
Katia Besnard ◽  
...  

AbstractArtificial basins are used to recharge groundwater and protect water pumping fields. In these basins, infiltration rates are monitored to detect any decrease in water infiltration in relation with clogging. However, miss-estimations of infiltration rate may result from neglecting the effects of water temperature change and air-entrapment. This study aims to investigate the effect of temperature and air entrapment on water infiltration at the basin scale by conducting successive infiltration cycles in an experimental basin of 11869 m2in a pumping field at Crepieux-Charmy (Lyon, France). A first experiment, conducted in summer 2011, showed a strong increase in infiltration rate; which was linked to a potential increase in ground water temperature or a potential dissolution of air entrapped at the beginning of the infiltration. A second experiment was conducted in summer, to inject cold water instead of warm water, and also revealed an increase in infiltration rate. This increase was linked to air dissolution in the soil. A final experiment was conducted in spring with no temperature contrast and no entrapped air (soil initially water-saturated), revealing a constant infiltration rate. Modeling and analysis of experiments revealed that air entrapment and cold water temperature in the soil could substantially reduce infiltration rate over the first infiltration cycles, with respective effects of similar magnitude. Clearly, both water temperature change and air entrapment must be considered for an accurate assessment of the infiltration rate in basins.

2007 ◽  
Vol 3 (3) ◽  
pp. 302-305 ◽  
Author(s):  
Kristin Rasmussen ◽  
Daniel M Palacios ◽  
John Calambokidis ◽  
Marco T Saborío ◽  
Luciano Dalla Rosa ◽  
...  

We report on a wintering area off the Pacific coast of Central America for humpback whales ( Megaptera novaeangliae ) migrating from feeding areas off Antarctica. We document seven individuals, including a mother/calf pair, that made this migration (approx. 8300 km), the longest movement undertaken by any mammal. Whales were observed as far north as 11° N off Costa Rica, in an area also used by a boreal population during the opposite winter season, resulting in unique spatial overlap between Northern and Southern Hemisphere populations. The occurrence of such a northerly wintering area is coincident with the development of an equatorial tongue of cold water in the eastern South Pacific, a pattern that is repeated in the eastern South Atlantic. A survey of location and water temperature at the wintering areas worldwide indicates that they are found in warm waters (21.1–28.3°C), irrespective of latitude. We contend that while availability of suitable reproductive habitat in the wintering areas is important at the fine scale, water temperature influences whale distribution at the basin scale. Calf development in warm water may lead to larger adult size and increased reproductive success, a strategy that supports the energy conservation hypothesis as a reason for migration.


2021 ◽  
Vol 9 (12) ◽  
pp. 1361
Author(s):  
So-Sun Kim ◽  
Gyeong-Sik Han ◽  
Hae-Kyun Yoo ◽  
Ki-Tae Kim ◽  
Soon-Gyu Byun ◽  
...  

Starry flounder (Platichthys stellatus) is a commercially important cold-water fish. Our aim was to investigate the effects of fluctuating water temperature on flounders after periods of starvation and feeding. Fish were divided into starvation and feeding groups. The water temperature was increased stepwise in experiment 1; more focused variations, based on the results of experiment 1, were studied in experiment 2. At temperatures ≤27 °C, there was no significant difference observed in survival. At 28 °C, mortality increased, survival was lower (21%) in the starvation group than in the feeding group (46%), and weight loss was the highest (15%) in the starvation group. In experiment 2, survival was ≥86%, and there was no significant difference between the starvation/feeding groups. However, when the water temperature was increased to 27 °C after being decreased to 12 °C, weight loss was the highest (11%). Glucose, cortisol, superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels increased with increasing water temperature, and then gradually decreased. Glutamic pyruvic transaminase (GPT)/glutamic oxaloacetic transaminase (GOT) levels showed large variations among individuals. Triglyceride, cholesterol, and protein levels gradually decreased with long-term starvation. Survival was not affected by water temperature drop ≤27 °C after starvation/feeding. These results indicate that 27 °C is the upper limit of tolerable water temperature for the survival of starry flounders. Therefore, aquaculture farms should ensure maintaining water temperatures at ≤27 °C during high-temperature periods.


2020 ◽  
Vol 642 ◽  
pp. 133-146
Author(s):  
PC González-Espinosa ◽  
SD Donner

Warm-water growth and survival of corals are constrained by a set of environmental conditions such as temperature, light, nutrient levels and salinity. Water temperatures of 1 to 2°C above the usual summer maximum can trigger a phenomenon known as coral bleaching, whereby disruption of the symbiosis between coral and dinoflagellate micro-algae, living within the coral tissue, reveals the white skeleton of coral. Anomalously cold water can also lead to coral bleaching but has been the subject of limited research. Although cold-water bleaching events are less common, they can produce similar impacts on coral reefs as warm-water events. In this study, we explored the effect of temperature and light on the likelihood of cold-water coral bleaching from 1998-2017 using available bleaching observations from the Eastern Tropical Pacific and the Florida Keys. Using satellite-derived sea surface temperature, photosynthetically available radiation and light attenuation data, cold temperature and light exposure metrics were developed and then tested against the bleaching observations using logistic regression. The results show that cold-water bleaching can be best predicted with an accumulated cold-temperature metric, i.e. ‘degree cooling weeks’, analogous to the heat stress metric ‘degree heating weeks’, with high accuracy (90%) and fewer Type I and Type II errors in comparison with other models. Although light, when also considered, improved prediction accuracy, we found that the most reliable framework for cold-water bleaching prediction may be based solely on cold-temperature exposure.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. D. Robertson ◽  
J. Gao ◽  
P. M. Regular ◽  
M. J. Morgan ◽  
F. Zhang

AbstractAnomalous local temperature and extreme events (e.g. heat-waves) can cause rapid change and gradual recovery of local environmental conditions. However, few studies have tested whether species distribution can recover following returning environmental conditions. Here, we tested for change and recovery of the spatial distributions of two flatfish populations, American plaice (Hippoglossoides platessoides) and yellowtail flounder (Limanda ferruginea), in response to consecutive decreasing and increasing water temperature on the Grand Bank off Newfoundland, Canada from 1985 to 2018. Using a Vector Autoregressive Spatiotemporal model, we found the distributions of both species shifted southwards following a period when anomalous cold water covered the northern sections of the Grand Bank. After accounting for density-dependent effects, we observed that yellowtail flounder re-distributed northwards when water temperature returned and exceeded levels recorded before the cold period, while the spatial distribution of American plaice has not recovered. Our study demonstrates nonlinear effects of an environmental factor on species distribution, implying the possibility of irreversible (or hard-to-reverse) changes of species distribution following a rapid change and gradual recovery of environmental conditions.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1208
Author(s):  
Ewa Olechno ◽  
Anna Puścion-Jakubik ◽  
Małgorzata Elżbieta Zujko ◽  
Katarzyna Socha

Coffee brews are one of the most popular drinks. They are consumed for caffeine and its stimulant properties. The study aimed to summarize data on the influence of various factors on caffeine content in brews prepared with different methods. The study was carried out using a literature review from 2010–2020. PubMed and Google Scholar databases were searched. Data on caffeine content was collected by analyzing the following factors: the influence of species, brewing time, water temperature, pressure, degree of roast, grinding degree, water type, water/coffee ratio as well as other factors (such as geographical origin). To sum up, converting caffeine content to 1 L of the brew, the highest content is that of brews prepared in an espresso machine (portafilter), with the amount of 7.5 g of a coffee blend (95% Robusta + 5% Arabica), and water (the volume of coffee brew was 25 mL) at a temperature of 92 °C and a pressure of 7 bar, but the highest content in one portion was detected in a brew of 50 g of Robusta coffee poured with 500 mL of cold water (25 °C) and boiled.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 975
Author(s):  
Kaiji Suzuki ◽  
Nobuo Ishiyama ◽  
Itsuro Koizumi ◽  
Futoshi Nakamura

Clarifying the combined effects of water temperature and other environmental factors on the species distributions of cold-water fishes is the first step toward obtaining a better understanding of the complex impacts of climate warming on these species. In the present study, we examined the abundance and occurrence of the fluvial sculpin, Cottus nozawae, in response to water temperature along environmental gradients in northern Japan. The abundance survey was conducted in the Sorachi River catchment with two-pass electrofishing with a backpack electrofisher. For the occurrence survey, we carried out one-pass electrofishing in the Sorachi, Chitose, and Tokachi River catchments. Fish sampling was conducted once from July to August 2018 in the Sorachi River catchment, from May to June 2011 in the Chitose River catchment, and from July to September 2012 in the Tokachi River catchment. Generalized linear mixed models (GLMMs) and generalized linear models (GLMs) were used for the abundance and occurrence analyses, respectively. We found that the mean summer water temperature was the most influential factor on the distribution of C. nozawae; the abundance and occurrence were both negatively affected by increased water temperatures. In the occurrence model, occurrence probabilities of 0.9 and 0.5 for C. nozawae corresponded to mean summer temperatures of 12.0 and 16.1 °C, respectively. Furthermore, we identified a combined effect of water temperature and current velocity on the abundance of C. nozawae. The increased mean summer water temperature had a stronger negative effect on C. nozawae abundance under gentle flow conditions. While the precise mechanisms of this combined effect could not be determined in this study, stressors associated with low current velocities may increase their vulnerability to higher water temperatures. Our findings indicate that flow disturbances caused by human activities such as excessive water abstraction may exacerbate the negative impacts of climate warming on populations of C. nozawae in the future.


2013 ◽  
Vol 45 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Weihong Dong ◽  
Gengxin Ou ◽  
Xunhong Chen ◽  
Zhaowei Wang

In this study, in situ and on-site permeameter tests were conducted in Clear Creek, Nebraska, USA to evaluate the effect of water temperature on streambed vertical hydraulic conductivity Kv. Fifty-two sediment cores were tested. Five of them were transferred to the laboratory for a series of experiments to evaluate the effect of water temperature on Kv. Compared with in situ tests, 42 out of the 52 tests have higher Kv values for on-site tests. The distribution of water temperature at the approximately 50 cm depth of streambed along the sand bar was investigated in the field. These temperatures had values in the range 14–19 °C with an average of 16 °C and had an increasing trend along the stream flow. On average, Kv values of the streambed sediments in the laboratory tests increase by 1.8% per 1 °C increase in water temperature. The coarser sandy sediments show a greater increase extent of the Kv value per 1 °C increase in water temperature. However, there is no distinct increasing trend of Kv value for sediment containing silt and clay layers.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Laura Ávila-Dávila ◽  
Manuel Soler-Méndez ◽  
Carlos Francisco Bautista-Capetillo ◽  
Julián González-Trinidad ◽  
Hugo Enrique Júnez-Ferreira ◽  
...  

Infiltration estimation is made by tests such as concentric cylinders, which are prone to errors, such as the lateral movement under the ring. Several possibilities have been developed over the last decades to compensate these errors, which are based on physical, electronic, and mathematical principles. In this research, two approaches are proposed to measure the water infiltration rate in a silty loam soil by means of the mass values of a lysimeter weighing under rainfall conditions and different moisture contents. Based on the fact that with the lysimeter it is possible to determine acting soil flows very precisely, then with the help of mass conservation and assuming a downward vertical movement, 12 rain events were analyzed. In addition, it was possible to monitor the behavior of soil moisture and to establish the content at field capacity from the values of the weighing lysimeter, from which both approach are based. The infiltration rate of these events showed a variable rate at the beginning of the rainfall until reaching a maximum, to descend to a stable or basic rate. This basic infiltration rate was 1.49 ± 0.36 mm/h, and this is because soils with fine textures have reported low infiltration capacity. Four empirical or semi-empirical models of infiltration were calibrated with the values obtained with our approaches, showing a better fit with the Horton’s model.


2018 ◽  
Vol 44 ◽  
pp. 00017 ◽  
Author(s):  
Agnieszka Chmielewska

The article discusses the influence of the cold water temperature on the amount of energy consumed for the purposes of the DHW preparation in multi-family buildings. The article begins with a presentation of the DHW consumption readings from a multi-family building, recorded on a monthly basis during the period of 4 years. The readings constituted the base for calculating the demand for energy for the purposes of the DHW preparation. Subsequently, basing on the output water temperature readings from the water treatment plant, it was proved that the temperature of the mains water fluctuates throughout the year. The review of the available literature, as well as the measurements, confirmed that it is necessary to develop a new model of the cold water temperature that would take into account the type of intake in a water treatment plant. The final part of the article presents how the accepted assumptions about the temperature of the mains water influence the consumption of energy for the purposes of the DHW preparation.


Sign in / Sign up

Export Citation Format

Share Document