scholarly journals German support systems for onshore wind farms in the context of Polish acts limiting wind energy development

2017 ◽  
Vol 34 (1) ◽  
pp. 109-115 ◽  
Author(s):  
Leszek Dawid

Abstract European energy system is undergoing a deep transition to low-emission energy sources, mainly wind farms. This transition is caused mostly by energy politics of European Union (EU) and its goals in the topic of renewable energy. European wind energy is dominated by Germany that produces half of total wind energy in EU. The aim of this article is to present support systems for wind farms existing in Germany in the context of introducing in Poland the Act of 20 May 2016 on Wind Energy Investments limiting onshore wind farms localization and Act of 22 June 2016 introducing changes to the Act on Renewable Energy Sources (RES) and some other acts. It is postulated to make amendments of acts regulating RES while considering German solutions.

2018 ◽  
Vol 64 ◽  
pp. 06003
Author(s):  
Rijkure Astrida

Renewable energy sources (wind energy, solar energy, hydroelectricity, ocean energy, geothermal energy, biomass and biofuels) are alternatives to fossil fuel that help to reduce greenhouse gas emissions, diversify energy supplies and reduce dependency on markets of unsustainable and volatile fossil fuels, particularly oil and gas. Wind energy is one of the renewable energy sources and is considered to be self-renewable as it is the result of the Sun’s activity. Using wind energy is a rapidly developing industry today, and more and more wind turbines are installed worldwide every year, land-based wind turbines being more widespread than offshore ones. In Latvia, spread of land-based wind parks is hampered by unsettled land ownership rights, while the deployment of wind parks in the sea is a new field for all Baltic States. The neighbouring countries Estonia and Lithuania have developed their own projects for offshore wind parks, therefore the topicality of the development of wind farms in the territorial waters of Latvia has also increased. Experts have proposed best options and their locations. When assessing possibilities for development of wind parks and their capacity, the following economic factors were evaluated: construction and connection costs, potential operational costs and energy prices. The aim of this study is to develop the methodology for calculating the area of a potential wind park by considering the safety distance to shipping routes and height of the wind turbines, as well as for calculating the potential capacity of a wind park.


2020 ◽  
Author(s):  
Rabin Dhakal ◽  
Bharosh Kumar Yadav ◽  
Niwesh Koirala ◽  
Binod Babu Kumal ◽  
Hanna Moussa

Renewable energy production needs serious attention in highly traditional, inefficient, and energy-dependent countries like Nepal. Moreover, the option of an effective renewable energy technology that is economically feasible and environmentally acceptable is a topic of interest due to the availability of various types of renewable energy sources in Nepal. Among other renewable energy sources like micro hydro, solar, biogas etc, very few studies had been conducted on wind energy sources in Nepal and those few studies also focuses mostly on large scale wind farming. So, this study analyzes the suitability of distributed wind energy production in Tila village of Jumla district in the western part of Nepal. Five-year (2015-2019) wind speed data were examined to obtain wind power density and energy density. Two-parameter Weibull probability density function was used to evaluate these two quantities. The annual Weibull parameters k and c of 1.73 and 4.21 m/s were obtained to calculate 43.79 W/m2 power density and 378.37 kWh/m2 energy density. This study also provides the economic evaluation of a 100 kW distributed wind energy system, and the technical and economic aspects of the proposed system are compared with the corresponding characteristics of the existing renewable energy systems, i.e., micro hydropower and solar power. The study shows that when there is not enough sunlight for the solar PV system and not enough water flow coupled with maintenance problems in the micro hydropower system, the distributed wind energy system may function as a substitute system.


Author(s):  
Prem Prakash ◽  

Wind energy sources and technologies have the potential to provide solutions to the long-standing energy problems being faced by developing countries. Renewable energy sources like wind energy can be used to overcome energy shortages in India. To meet the energy required for such a fast-growing economy, India will require an assured supply of 3–4 times more energy than the total energy consumed today. Renewable energy is one of the options to meet this requirement. In this paper, efforts have been made to summarize the availability, current status of wind energy, wind power potential, wind power growth, repowering wind farms in India, and future potentials of renewable energy options in India. This paper also discusses the wind real contribution to the electricity demand of India and aspects for the improvement of wind technology. This paper also assesses specific policy interventions for overcoming the barriers and enhancing the deployment of renewable for the future.


2021 ◽  
Vol 11 (6) ◽  
pp. 7793-7799
Author(s):  
T. Lachumanan ◽  
R. Singh ◽  
M. I. Shapiai ◽  
T. J. S. Anand

This paper presents the development and the performance analysis of the developed model of a voltage-based coordinating controller. This model is developed to perform activities such as sensing, measuring, switching, coordinating, and effectively managing the output voltages produced by the solar-wind renewable energy sources in order to supply the connected load or/and charge the battery storage system. The developed model has different tasks to perform when solar-wind energy sources both produce output voltages simultaneously, also contributing to solving the requirements of different synchronization algorithms for a multi-agent renewable energy system. The sensed and measured output voltages of the solar-wind energy sources are used as directive information to allow the developed model’s controller to supply the available power to the connected load or/and charge the battery storage system. Also, the produced information at the model’s controller input is used to individually control the other sub-system, which directly assists in achieving the aim of simultaneous operation when both solar and wind energy sources produce output voltages. The model is developed and simulated in Matlab/Simulink. The simulation results are used to validate the developed methodology and the aims of the developed model.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 682
Author(s):  
Zita Szabó ◽  
Viola Prohászka ◽  
Ágnes Sallay

Nowadays, in the context of climate change, efficient energy management and increasing the share of renewable energy sources in the energy mix are helping to reduce greenhouse gases. In this research, we present the energy system and its management and the possibilities of its development through the example of an ecovillage. The basic goal of such a community is to be economically, socially, and ecologically sustainable, so the study of energy system of an ecovillage is especially justified. As the goal of this community is sustainability, potential technological and efficiency barriers to the use of renewable energy sources will also become visible. Our sample area is Visnyeszéplak ecovillage, where we examined the energy production and consumption habits and possibilities of the community with the help of interviews, literature, and map databases. By examining the spatial structure of the settlement, we examined the spatial structure of energy management. We formulated development proposals that can make the community’s energy management system more efficient.


Author(s):  
Sharmini Nakkela

Abstract: Modern study about utilizing energy from renewable energy sources was stimulus due to emerging oil crisis in older days due to uncontrolled use of conventional energy sources. Renewable Power Generation from wind and solar energy has become a significant proportion for the overall power generation in the grid. High penetration of Renewable Power Generation (RPG’s) effectreliable operation of bulk power system due to fluctuation of frequency and voltage of the network. The main objectives of high penetration of Renewable Power Generations in distribution system are Regulation of voltage, Mitigating voltage fluctuations due to flickers and Frequency control. The design and control of voltage regulation system using smart loads (SL’s) under large penetration of renewable energy system in distribution level is to be studied with the help of FACT devices like Static Compensator (STATCOM) and It is one of the fast active devices with accurate voltage regulation capability and most importantly for the sensitive/critical loads. Electric spring (ES) is proposed as compelling technique for guideline of framework voltage under fluctuating RPG's with next to no guide of correspondence framework [1]. It is a converter-based framework with self-commutated switches in span design, which is associated with non-basic burdens in series to go about as savvy load. These Smart Loads are controlled to direct voltage across basic burdens and hence partaking popular side administration. Expanded entrance of RPG’s, basically factor speed wind energy transformation framework is having impact on voltage and power quality [1][2]. In this paper, A contextual analysis of impact of variable speed wind energy framework on voltage is completed and which is demonstrated with fluctuating breeze speed. Execution examination of keen burdens are to be contrasted and existing receptive power compensator burdens and Improvement in voltage profile on test feeder is directed on a 3 Bus system and 15 Bus system. Keywords: Renewable energy system (RES), Electric spring (ES), STATCOM, Voltage Flicker, Smart load


2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


2018 ◽  
Vol 58 ◽  
pp. 03006 ◽  
Author(s):  
Bekzhan Mukatov ◽  
Ravil Khabibullin

The article describes the main factors determining the development of renewable energy sources in the world. The assessment of the applicability of foreign RES development strategies to Kazakhstan’s energy system has been made. The main tasks facing Kazakhstan’s energy system with large-scale implementation of renewable energy were formulated. On the basis of the analysis and performed calculations recommendations and basic principles have been made on development strategy of renewable energy sources in the Republic of Kazakhstan.


2018 ◽  
Vol 17 (2) ◽  
pp. 31-36
Author(s):  
Abir Muhtadi ◽  
Ahmed Mortuza Saleque ◽  
Mohammad Abdul Mannan

Due to sheer dependency upon fossil fuel sources, Bangladesh as a country is not free from numerous negative aspects. Country’s requirement for a certain portion of power be generated from renewable energy sources is due and required renewable energy target (RET) needs to be fulfilled. In this study, potential of distinguished coastal sites for entirely renewable energy such as solar and wind sources based microgrid for chosen community is explored. Microgrid architecture is appropriate considering the coastal areas’ geographical locations and due to the inconvenience in grid extension. Study suggests, potential of coastal sites are found to be feasible for such structures based on real case scenario data and modelled technical scheme.


Author(s):  
Dilara Gulcin Caglayan ◽  
Heidi Ursula Heinrichs ◽  
Detlef Stolten ◽  
Martin Robinius

The transition towards a renewable energy system is essential in order to reduce greenhouse gas emissions. The increase in the share of variable renewable energy sources (VRES), which mainly comprise wind and solar energy, necessitates storage technologies by which the intermittency of VRES can be compensated for. Although hydrogen has been envisioned to play a significant role as a promising alternative energy carrier in a future European VRES-based energy concept, the optimal design of this system remains uncertain. In this analysis, a hydrogen infrastructure is posited that would meet the electricity and hydrogen demand for a 100% renewable energy-based European energy system in the context of 2050. The overall system design is optimized by minimizing the total annual cost. Onshore and offshore wind energy, open-field photovoltaics (PV), rooftop PV and hydro energy, as well as biomass, are the technologies employed for electricity generation. The electricity generated is then either transmitted through the electrical grid or converted into hydrogen by means of electrolyzers and then distributed through hydrogen pipelines. Battery, hydrogen vessels and salt caverns are considered as potential storage technologies. In the case of a lull, stored hydrogen can be re-electrified to generate electricity to meet demand during that time period. For each location, eligible technologies are introduced, as well as their maximum capacity and hourly demand profiles, in order to build the optimization model. In addition, a generation time series for VRES has been exogenously derived for the model. The generation profiles of wind energy have been investigated in detail by considering future turbine designs with high spatial resolution. In terms of salt cavern storage, the technical potential for hydrogen storage is defined in the system as the maximum allowable capacity per region. Whether or not a technology is installed in a region, the hourly operation of these technologies, as well as the cost of each technology, are obtained within the optimization results. It is revealed that a 100 percent renewable energy system is feasible and would meet both electricity demand and hydrogen demand in Europe.


Sign in / Sign up

Export Citation Format

Share Document