scholarly journals Computer-aided diagnosis of skin cancer based on soft computing techniques

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 860-871
Author(s):  
Zhiying Xu ◽  
Fatima Rashid Sheykhahmad ◽  
Noradin Ghadimi ◽  
Navid Razmjooy

AbstractSkin cancer is a type of disease in which malignant cells are formed in skin tissues. However, skin cancer is a dangerous disease, and an early detection of this disease helps the therapists to cure this disease. In the present research, an automatic computer-aided method is presented for the early diagnosis of skin cancer. After image noise reduction based on median filter in the first stage, a new image segmentation based on the convolutional neural network optimized by satin bowerbird optimization (SBO) has been adopted and its efficiency has been indicated by the confusion matrix. Then, feature extraction is performed to extract the useful information from the segmented image. An optimized feature selection based on the SBO algorithm is also applied to prune excessive information. Finally, a support vector machine classifier is used to categorize the processed image into the following two groups: cancerous and healthy cases. Simulations have been performed of the American Cancer Society database, and the results have been compared with ten different methods from the literature to investigate the performance of the system in terms of accuracy, sensitivity, negative predictive value, specificity, and positive predictive value.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Fang Yang ◽  
Murat Hamit ◽  
Chuan B. Yan ◽  
Juan Yao ◽  
Abdugheni Kutluk ◽  
...  

Esophageal cancer is one of the fastest rising types of cancers in China. The Kazak nationality is the highest-risk group in Xinjiang. In this work, an effective computer-aided diagnostic system is developed to assist physicians in interpreting digital X-ray image features and improving the quality of diagnosis. The modules of the proposed system include image preprocessing, feature extraction, feature selection, image classification, and performance evaluation. 300 original esophageal X-ray images were resized to a region of interest and then enhanced by the median filter and histogram equalization method. 37 features from textural, frequency, and complexity domains were extracted. Both sequential forward selection and principal component analysis methods were employed to select the discriminative features for classification. Then, support vector machine andK-nearest neighbors were applied to classify the esophageal cancer images with respect to their specific types. The classification performance was evaluated in terms of the area under the receiver operating characteristic curve, accuracy, precision, and recall, respectively. Experimental results show that the classification performance of the proposed system outperforms the conventional visual inspection approaches in terms of diagnostic quality and processing time. Therefore, the proposed computer-aided diagnostic system is promising for the diagnostics of esophageal cancer.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


2019 ◽  
Vol 23 (1) ◽  
pp. 12-21 ◽  
Author(s):  
Shikha N. Khera ◽  
Divya

Information technology (IT) industry in India has been facing a systemic issue of high attrition in the past few years, resulting in monetary and knowledge-based loses to the companies. The aim of this research is to develop a model to predict employee attrition and provide the organizations opportunities to address any issue and improve retention. Predictive model was developed based on supervised machine learning algorithm, support vector machine (SVM). Archival employee data (consisting of 22 input features) were collected from Human Resource databases of three IT companies in India, including their employment status (response variable) at the time of collection. Accuracy results from the confusion matrix for the SVM model showed that the model has an accuracy of 85 per cent. Also, results show that the model performs better in predicting who will leave the firm as compared to predicting who will not leave the company.


Medicina ◽  
2021 ◽  
Vol 57 (6) ◽  
pp. 527
Author(s):  
Vijay Vyas Vadhiraj ◽  
Andrew Simpkin ◽  
James O’Connell ◽  
Naykky Singh Singh Ospina ◽  
Spyridoula Maraka ◽  
...  

Background and Objectives: Thyroid nodules are lumps of solid or liquid-filled tumors that form inside the thyroid gland, which can be malignant or benign. Our aim was to test whether the described features of the Thyroid Imaging Reporting and Data System (TI-RADS) could improve radiologists’ decision making when integrated into a computer system. In this study, we developed a computer-aided diagnosis system integrated into multiple-instance learning (MIL) that would focus on benign–malignant classification. Data were available from the Universidad Nacional de Colombia. Materials and Methods: There were 99 cases (33 Benign and 66 malignant). In this study, the median filter and image binarization were used for image pre-processing and segmentation. The grey level co-occurrence matrix (GLCM) was used to extract seven ultrasound image features. These data were divided into 87% training and 13% validation sets. We compared the support vector machine (SVM) and artificial neural network (ANN) classification algorithms based on their accuracy score, sensitivity, and specificity. The outcome measure was whether the thyroid nodule was benign or malignant. We also developed a graphic user interface (GUI) to display the image features that would help radiologists with decision making. Results: ANN and SVM achieved an accuracy of 75% and 96% respectively. SVM outperformed all the other models on all performance metrics, achieving higher accuracy, sensitivity, and specificity score. Conclusions: Our study suggests promising results from MIL in thyroid cancer detection. Further testing with external data is required before our classification model can be employed in practice.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1994
Author(s):  
Qian Ma ◽  
Wenting Han ◽  
Shenjin Huang ◽  
Shide Dong ◽  
Guang Li ◽  
...  

This study explores the classification potential of a multispectral classification model for farmland with planting structures of different complexity. Unmanned aerial vehicle (UAV) remote sensing technology is used to obtain multispectral images of three study areas with low-, medium-, and high-complexity planting structures, containing three, five, and eight types of crops, respectively. The feature subsets of three study areas are selected by recursive feature elimination (RFE). Object-oriented random forest (OB-RF) and object-oriented support vector machine (OB-SVM) classification models are established for the three study areas. After training the models with the feature subsets, the classification results are evaluated using a confusion matrix. The OB-RF and OB-SVM models’ classification accuracies are 97.09% and 99.13%, respectively, for the low-complexity planting structure. The equivalent values are 92.61% and 99.08% for the medium-complexity planting structure and 88.99% and 97.21% for the high-complexity planting structure. For farmland with fragmentary plots and a high-complexity planting structure, as the planting structure complexity changed from low to high, both models’ overall accuracy levels decreased. The overall accuracy of the OB-RF model decreased by 8.1%, and that of the OB-SVM model only decreased by 1.92%. OB-SVM achieves an overall classification accuracy of 97.21%, and a single-crop extraction accuracy of at least 85.65%. Therefore, UAV multispectral remote sensing can be used for classification applications in highly complex planting structures.


2019 ◽  
Vol 73 (5) ◽  
pp. 565-573 ◽  
Author(s):  
Yun Zhao ◽  
Mahamed Lamine Guindo ◽  
Xing Xu ◽  
Miao Sun ◽  
Jiyu Peng ◽  
...  

In this study, a method based on laser-induced breakdown spectroscopy (LIBS) was developed to detect soil contaminated with Pb. Different levels of Pb were added to soil samples in which tobacco was planted over a period of two to four weeks. Principal component analysis and deep learning with a deep belief network (DBN) were implemented to classify the LIBS data. The robustness of the method was verified through a comparison with the results of a support vector machine and partial least squares discriminant analysis. A confusion matrix of the different algorithms shows that the DBN achieved satisfactory classification performance on all samples of contaminated soil. In terms of classification, the proposed method performed better on samples contaminated for four weeks than on those contaminated for two weeks. The results show that LIBS can be used with deep learning for the detection of heavy metals in soil.


Sign in / Sign up

Export Citation Format

Share Document