scholarly journals Promising novel biomarkers and candidate small-molecule drugs for lung adenocarcinoma: Evidence from bioinformatics analysis of high-throughput data

Open Medicine ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 96-112
Author(s):  
Chengrui Li ◽  
Yufeng Wan ◽  
Weijun Deng ◽  
Fan Fei ◽  
Linlin Wang ◽  
...  

Abstract Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer associated with an unstable prognosis. Thus, there is an urgent demand for the identification of novel diagnostic and prognostic biomarkers as well as targeted drugs for LUAD. The present study aimed to identify potential new biomarkers associated with the pathogenesis and prognosis of LUAD. Three microarray datasets (GSE10072, GSE31210, and GSE40791) from the Gene Expression Omnibus database were integrated to identify the differentially expressed genes (DEGs) in normal and LUAD samples using the limma package. Bioinformatics tools were used to perform functional and signaling pathway enrichment analyses for the DEGs. The expression and prognostic values of the hub genes were further evaluated by Gene Expression Profiling Interactive Analysis and real-time quantitative polymerase chain reaction. Furthermore, we mined the “Connectivity Map” (CMap) to explore candidate small molecules that can reverse the tumoral of LUAD based on the DEGs. A total of 505 DEGs were identified, which included 337 downregulated and 168 upregulated genes. The PPI network was established with 1,860 interactions and 373 nodes. The most significant pathway and functional enrichment associated with the genes were cell adhesion and extracellular matrix-receptor interaction, respectively. Seven DEGs with high connectivity degrees (ZWINT, RRM2, NDC80, KIF4A, CEP55, CENPU, and CENPF) that were significantly associated with worse survival were chosen as hub genes. Lastly, top 20 most important small molecules which reverses the LUAD gene expressions were identified. The findings contribute to revealing the molecular mechanisms of the initiation and progression of LUAD and provide new insights for integrating multiple biomarkers in clinical practice.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7313 ◽  
Author(s):  
Tingting Guo ◽  
Hongtao Ma ◽  
Yubai Zhou

Background Lung adenocarcinoma (LUAD) is the major subtype of lung cancer and the most lethal malignant disease worldwide. However, the molecular mechanisms underlying LUAD are not fully understood. Methods Four datasets (GSE118370, GSE85841, GSE43458 and GSE32863) were obtained from the gene expression omnibus (GEO). Identification of differentially expressed genes (DEGs) and functional enrichment analysis were performed using the limma and clusterProfiler packages, respectively. A protein–protein interaction (PPI) network was constructed via Search Tool for the Retrieval of Interacting Genes (STRING) database, and the module analysis was performed by Cytoscape. Then, overall survival analysis was performed using the Kaplan–Meier curve, and prognostic candidate biomarkers were further analyzed using the Oncomine database. Results Totally, 349 DEGs were identified, including 275 downregulated and 74 upregulated genes which were significantly enriched in the biological process of extracellular structure organization, leukocyte migration and response to peptide. The mainly enriched pathways were complement and coagulation cascades, malaria and prion diseases. By extracting key modules from the PPI network, 11 hub genes were screened out. Survival analysis showed that except VSIG4, other hub genes may be involved in the development of LUAD, in which MYH10, METTL7A, FCER1G and TMOD1 have not been reported previously to correlated with LUAD. Briefly, novel hub genes identified in this study will help to deepen our understanding of the molecular mechanisms of LUAD carcinogenesis and progression, and to discover candidate targets for early detection and treatment of LUAD.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Zhaoyan Li ◽  
Qingyu Wang ◽  
Gaoyang Chen ◽  
Xin Li ◽  
Qiwei Yang ◽  
...  

Osteoarthritis (OA) is one of the most common diseases worldwide, but the pathogenic genes and pathways are largely unclear. The aim of this study was to screen and verify hub genes involved in OA and explore potential molecular mechanisms. The expression profiles of GSE12021 and GSE55235 were downloaded from the Gene Expression Omnibus (GEO) database, which contained 39 samples, including 20 osteoarthritis synovial membranes and 19 matched normal synovial membranes. The raw data were integrated to obtain differentially expressed genes (DEGs) and were deeply analyzed by bioinformatics methods. The Gene Ontology (GO) and pathway enrichment of DEGs were performed by DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) online analyses, respectively. The protein-protein interaction (PPI) networks of the DEGs were constructed based on data from the STRING database. The top 10 hub genes VEGFA, IL6, JUN, IL1β, MYC, IL4, PTGS2, ATF3, EGR1, and DUSP1 were identified from the PPI network. Module analysis revealed that OA was associated with significant pathways including TNF signaling pathway, cytokine-cytokine receptor interaction, and osteoclast differentiation. The qRT-PCR result showed that the expression level of IL6, VEGFA, JUN, IL-1β, and ATF3 was significantly increased in OA samples (p < 0.05), and these candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of OA.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaodong Yang ◽  
Yuexin Zheng ◽  
Zhihai Han ◽  
Xiliang Zhang

Abstract Background As a marker of differentiation, Killer cell lectin like receptor G1 (KLRG1) plays an inhibitory role in human NK cells and T cells. However, its clinical role remains inexplicit. This work intended to investigate the predictive ability of KLRG1 on the efficacy of immune-checkpoint inhibitor in the treatment of lung adenocarcinoma (LUAD), as well as contribute to the possible molecular mechanisms of KLRG1 on LUAD development. Methods Using data from the Gene Expression Omnibus, the Cancer Genome Atlas and the Genotype-Tissue Expression, we compared the expression of KLRG1 and its related genes Bruton tyrosine kinase (BTK), C-C motif chemokine receptor 2 (CCR2), Scm polycomb group protein like 4 (SCML4) in LUAD and normal lung tissues. We also established stable LUAD cell lines with KLRG1 gene knockdown and investigated the effect of KLRG1 knockdown on tumor cell proliferation. We further studied the prognostic value of the four factors in terms of overall survival (OS) in LUAD. Using data from the Gene Expression Omnibus, we further investigated the expression of KLRG1 in the patients with different responses after immunotherapy. Results The expression of KLRG1, BTK, CCR2 and SCML4 was significantly downregulated in LUAD tissues compared to normal controls. Knockdown of KLRG1 promoted the proliferation of A549 and H1299 tumor cells. And low expression of these four factors was associated with unfavorable overall survival in patients with LUAD. Furthermore, low expression of KLRG1 also correlated with poor responses to immunotherapy in LUAD patients. Conclusion Based on these findings, we inferred that KLRG1 had significant correlation with immunotherapy response. Meanwhile, KLRG1, BTK, CCR2 and SCML4 might serve as valuable prognostic biomarkers in LUAD.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Bojun Xu ◽  
Lei Wang ◽  
Huakui Zhan ◽  
Liangbin Zhao ◽  
Yuehan Wang ◽  
...  

Objectives. Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) throughout the world, and the identification of novel biomarkers via bioinformatics analysis could provide research foundation for future experimental verification and large-group cohort in DN models and patients. Methods. GSE30528, GSE47183, and GSE104948 were downloaded from Gene Expression Omnibus (GEO) database to find differentially expressed genes (DEGs). The difference of gene expression between normal renal tissues and DN renal tissues was firstly screened by GEO2R. Then, the protein-protein interactions (PPIs) of DEGs were performed by STRING database, the result was integrated and visualized via applying Cytoscape software, and the hub genes in this PPI network were selected by MCODE and topological analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out to determine the molecular mechanisms of DEGs involved in the progression of DN. Finally, the Nephroseq v5 online platform was used to explore the correlation between hub genes and clinical features of DN. Results. There were 64 DEGs, and 32 hub genes were identified, enriched pathways of hub genes involved in several functions and expression pathways, such as complement binding, extracellular matrix structural constituent, complement cascade related pathways, and ECM proteoglycans. The correlation analysis and subgroup analysis of 7 complement cascade-related hub genes and the clinical characteristics of DN showed that C1QA, C1QB, C3, CFB, ITGB2, VSIG4, and CLU may participate in the development of DN. Conclusions. We confirmed that the complement cascade-related hub genes may be the novel biomarkers for DN early diagnosis and targeted treatment.


2021 ◽  
Author(s):  
Hongpeng Fang ◽  
Zhansen Huang ◽  
Xianzi Zeng ◽  
Jiaming Wan ◽  
Jieying Wu ◽  
...  

Abstract Background As a common malignant cancer of the urinary system, the precise molecular mechanisms of bladder cancer remain to be illuminated. The purpose of this study was to identify core genes with prognostic value as potential oncogenes for the diagnosis, prognosis or novel therapeutic targets of bladder cancer. Methods The gene expression profiles GSE3167 and GSE7476 were available from the Gene Expression Omnibus (GEO) database. Next, PPI network was built to filter the hub gene through the STRING database and Cytoscape software and GEPIA and Kaplan-Meier plotter were implemented. Frequency and type of hub genes and sub groups analysis were performed in cBioportal and ULCAN database. Finally,We used RT-qPCR to confirm our results. Results Totally, 251 DEGs were excavated from two datasets in our study. We only founded high expression of SMC4, TYMS, CCNB1, CKS1B, NUSAP1 and KPNA2 was associated with worse outcomes in bladder cancer patients and no matter from the type of mutation or at the transcriptional level of hub genes, the tumor showed a high form of expression. However, only the expression of SMC4,CCNB1and CKS1B remained changed between the cancer and the normal samples in our results of RT-qPCR. Conclusion In conclusion,These findings indicate that the SMC4,CCNB1 and CKS1B may serve as critical biomarkers in the development and poor prognosis.


2020 ◽  
Author(s):  
Xi Pan ◽  
Jian-Hao Liu

Abstract Background Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma that the underlying molecular mechanisms involved in the tumor initiation, progression, and migration are largely unclear. The purpose of the present study was to identify key biomarkers and small-molecule drugs for NPC screening, diagnosis, and therapy via gene expression profile analysis. Methods Raw microarray data of NPC were retrieved from the Gene Expression Omnibus (GEO) database and analyzed to screen out the potential differentially expressed genes (DEGs). The key modules associated with histology grade and tumor stage was identified by using weighted correlation network analysis (WGCNA). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of genes in the key module were performed to identify potential mechanisms. Candidate hub genes were obtained, which based on the criteria of module membership (MM) and high connectivity. Then we used receiver operating characteristic (ROC) curve to evaluate the diagnostic value of hub genes. The Connectivity map database was further used to screen out small-molecule drugs of hub genes. Results A total of 430 DEGs were identified based on two GEO datasets. The green gene module was considered as key module for the tumor stage of NPC via WGCNA analysis. The results of functional enrichment analysis revealed that genes in the green module were enriched in regulation of cell cycle, p53 signaling pathway, cell part morphogenesis. Furthermore, four DEGs-related hub genes in the green module were considered as the final hub genes. Then ROC revealed that the final four hub genes presented with high areas under the curve, suggesting these hub genes may be diagnostic biomarkers for NPC. Meanwhile, we screened out several small-molecule drugs that have provided potentially therapeutic goals for NPC. Conclusions Our research identified four potential prognostic biomarkers and several candidate small-molecule drugs for NPC, which may contribute to the new insights for NPC therapy.


2020 ◽  
Author(s):  
Yumei Li ◽  
Bifei Li ◽  
Fan Chen ◽  
Weiyu Shen ◽  
Vladimir L. Katanaev ◽  
...  

Abstract Background Metastasis is the leading cause of melanoma mortality. Current therapies are rarely curative for metastatic melanoma, revealing the urgent need to identify more effective preventive and therapeutic targets. This study aimed to screen for the key core genes and molecular mechanisms related to the metastasis of melanoma. Methods Gene expression profile, GSE8401 including 31 primary melanoma and 52 metastatic melanoma clinical samples, was downloaded from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between metastatic melanoma and primary melanoma were screened using GEO2R. Assays of gene ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG) pathway and protein-protein interaction (PPI) were performed to visualize these DEGs through Database for Annotation, Visualization and Integrated Discovery (DAVID) software and Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape with Molecular Complex Detection (MCODE) plug-in tools. Top 10 genes with high degree were defined as hub genes. Furthermore, paired post-metastatic melanoma cells and pre-metastatic melanoma cells were established by experimental mouse model of melanoma metastasis to verify the expression of these hub genes. Results 424 DEGs between the metastatic melanoma and primary melanoma were screened, including 60 upregulated genes enriched in ECM-receptor interaction and progesterone-mediated oocyte maturation and 364 downregulated genes enriched in amoebiasis, melanogenesis, and ECM-receptor interaction. CDH1, EGFR, KRT5, COL17A1, KRT14, IVL, DSP, DSG1, FLG and CDK1 were defined as the hub genes. . In addition, paired post-metastatic melanoma cells (A375M) and pre-metastatic melanoma cells (A375) were established and qRT-PCR analysis confirmed the expression of the hub genes during melanoma metastasis. Conclusion This bioinformatic study has provided a deeper understanding of the molecular mechanisms of melanoma metastasis. KRT5, IVL and COL17A1 have emerged as possible biomarkers and therapeutic targets in metastasis of melanoma.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257343
Author(s):  
Shaoshuo Li ◽  
Baixing Chen ◽  
Hao Chen ◽  
Zhen Hua ◽  
Yang Shao ◽  
...  

Objectives Smoking is a significant independent risk factor for postmenopausal osteoporosis, leading to genome variations in postmenopausal smokers. This study investigates potential biomarkers and molecular mechanisms of smoking-related postmenopausal osteoporosis (SRPO). Materials and methods The GSE13850 microarray dataset was downloaded from Gene Expression Omnibus (GEO). Gene modules associated with SRPO were identified using weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) analysis, and pathway and functional enrichment analyses. Feature genes were selected using two machine learning methods: support vector machine-recursive feature elimination (SVM-RFE) and random forest (RF). The diagnostic efficiency of the selected genes was assessed by gene expression analysis and receiver operating characteristic curve. Results Eight highly conserved modules were detected in the WGCNA network, and the genes in the module that was strongly correlated with SRPO were used for constructing the PPI network. A total of 113 hub genes were identified in the core network using topological network analysis. Enrichment analysis results showed that hub genes were closely associated with the regulation of RNA transcription and translation, ATPase activity, and immune-related signaling. Six genes (HNRNPC, PFDN2, PSMC5, RPS16, TCEB2, and UBE2V2) were selected as genetic biomarkers for SRPO by integrating the feature selection of SVM-RFE and RF. Conclusion The present study identified potential genetic biomarkers and provided a novel insight into the underlying molecular mechanism of SRPO.


2021 ◽  
Author(s):  
Mohib kakar ◽  
Muhammad Mehboob ◽  
Muhammad Akram ◽  
Imran Iqbal ◽  
Hafza Ijaz ◽  
...  

Abstract Objective The goal of this study was to understand possible core genes associated with hepatocellular carcinoma (HCC) pathogenesis and prognosis. Methods GEO contains datasets of gene expression, miRNA and methylation patterns of diseased and healthy/control patients. GSE62232 Dataset was selected by employing the server Gene Expression Omnibus. A total of 91 samples were collected, including 81 HCC samples and 10 healthy samples as control. GSE62232 was analyzed through GEO2R, and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein Relationship Networking search method has been used for extracting genes interacting. MCC method was used to calculate the top 10 genes according to their importance. Hub genes in the network were analyzed using GEPIA to estimate the effect of their differential expression on cancer progression. Results We identified the top 10 hub genes through Cytohubba plugin. These genes include Cell Cycle Regulatory Cyclins and Cyclin-dependent proteins CCNA2, CCNB1 and CDK1. The pathogenesis and prognosis of HCC may be directly linked with the aforementioned genes. Conclusion In this analysis, we found critical genes for HCC that showed recommendations for more diagnostic and predictive biomarkers studies that could promote selective molecular therapy for HCC.


2022 ◽  
Vol 2022 ◽  
pp. 1-17
Author(s):  
Md. Rakibul Islam ◽  
Lway Faisal Abdulrazak ◽  
Mohammad Khursheed Alam ◽  
Bikash Kumar Paul ◽  
Kawsar Ahmed ◽  
...  

Background. Medulloblastoma (MB) is the most occurring brain cancer that mostly happens in childhood age. This cancer starts in the cerebellum part of the brain. This study is designed to screen novel and significant biomarkers, which may perform as potential prognostic biomarkers and therapeutic targets in MB. Methods. A total of 103 MB-related samples from three gene expression profiles of GSE22139, GSE37418, and GSE86574 were downloaded from the Gene Expression Omnibus (GEO). Applying the limma package, all three datasets were analyzed, and 1065 mutual DEGs were identified including 408 overexpressed and 657 underexpressed with the minimum cut-off criteria of ∣ log   fold   change ∣ > 1 and P < 0.05 . The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and WikiPathways enrichment analyses were executed to discover the internal functions of the mutual DEGs. The outcomes of enrichment analysis showed that the common DEGs were significantly connected with MB progression and development. The Search Tool for Retrieval of Interacting Genes (STRING) database was used to construct the interaction network, and the network was displayed using the Cytoscape tool and applying connectivity and stress value methods of cytoHubba plugin 35 hub genes were identified from the whole network. Results. Four key clusters were identified using the PEWCC 1.0 method. Additionally, the survival analysis of hub genes was brought out based on clinical information of 612 MB patients. This bioinformatics analysis may help to define the pathogenesis and originate new treatments for MB.


Sign in / Sign up

Export Citation Format

Share Document