scholarly journals Simplified Analytical Methods to Analyze Lock Gates Submitted to Ship Collisions and Earthquakes

2015 ◽  
Vol 11 (3) ◽  
pp. 8-22 ◽  
Author(s):  
Loic Buldgen ◽  
Andreea Bela ◽  
Rigo Philippe

Abstract This paper presents two simplified analytical methods to analyze lock gates submitted to two different accidental loads. The case of an impact involving a vessel is first investigated. In this situation, the resistance of the struck gate is evaluated by assuming a local and a global deforming mode. The super-element method is used in the first case, while an equivalent beam model is simultaneously introduced to capture the overall bending motion of the structure. The second accidental load considered in this paper is the seismic action, for which an analytical method is presented to evaluate the total hydrodynamic pressure applied on a lock gate during an earthquake, due account being taken of the fluid-structure interaction. For each of these two actions, numerical validations are presented and the analytical results are compared to finite-element solutions.

2014 ◽  
Vol 137 (1) ◽  
Author(s):  
J. H. L. Ling ◽  
A. A. O. Tay

All current analytical methods for calculating junction temperature of field effect transistor (FET) and monolithic microwave integrated circuits (MMIC) devices have assumed a constant uniform temperature at the base of the substrate. In a packaged device, however, where the substrate is attached to a carrier, finite element thermal analyses have shown that the temperature distribution along the base of the substrate is not uniform but has a bell-shaped distribution. Consequently, current analytical methods which attempt to predict the junction temperature of a packaged MMIC device by assuming a constant uniform temperature at the base of the substrate have been found to be inaccurate. In this paper, it is found that the temperature distribution along the base of a substrate can be well approximated by a Lorentz distribution which can be determined from a few basic parameters of the device such as the gate length, gate pitch, number of gates, and length of substrate. By incorporating this Lorentz temperature distribution at the base of the substrate with a new closed-form solution for the three-dimensional temperature distribution within the substrate, a new analytical method is developed for accurately calculating the junction temperature of MMIC devices. The accuracy of this new method has been verified with junction temperatures of MMIC devices measured using thermoreflectance thermography (TRT) as well as those calculated using finite element analysis (FEA).


Author(s):  
Ying Li ◽  
Bin Wang ◽  
Xin Li

Based on the summary of the existing analytical methods of buried steel pipelines at crossings with active strike-slip faults, an improved analytical methodology herein is proposed. Based on Karamitros model, the Ramberg-Osgood stress-strain relationships of pipe steel and the effects of nonlinear soil-pipeline interaction in both the axial and transverse directions are taken into account. Compared with existing analytical methodologies and 3D nonlinear finite element analysis, the analytical methodology presented is suitable for engineering applications due to exact and conservative results.


Corrugated metal pipes, fabricated from galvanized steel, are among the most common structures employed to construct, culverts, underpasses, etc. in the world. Furthermore, the merits of this system over the traditional concrete structures are: lightweight structure, great strength relative to their mass, ease of transport and installation, and low cost. However, application of such construction system in Egypt is not commonly used yet, and many technical problems have been observed during and after construction. Consequently, this paper investigates the deformations around buried steel structures, axial forces and bending moments induced in structures due to back-filling and external loading. Furthermore, two case studies of buried steel projects have been presented in this paper. The first case study has been simulated using finite element method while the second one has been analyzed using analytical methods given in the literature and well-known codes of practice. Thus, an elaborated comparative study has been performed between finite element results and those obtained from analytical methods.


Author(s):  
Er. Hardik Dhull

The finite element method is a numerical method that is used to find solution of mathematical and engineering problems. It basically deals with partial differential equations. It is very complex for civil engineers to study various structures by using analytical method,so they prefer finite element methods over the analytical methods. As it is an approximate solution, therefore several limitationsare associated in the applicationsin civil engineering due to misinterpretationof analyst. Hence, the main aim of the paper is to study the finite element method in details along with the benefits and limitations of using this method in analysis of building components like beams, frames, trusses, slabs etc.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


Meccanica ◽  
2021 ◽  
Author(s):  
J. Jansson ◽  
K. Salomonsson ◽  
J. Olofsson

AbstractIn this paper we present a semi-multiscale methodology, where a micrograph is split into multiple independent numerical model subdomains. The purpose of this approach is to enable a controlled reduction in model fidelity at the microscale, while providing more detailed material data for component level- or more advanced finite element models. The effective anisotropic elastic properties of each subdomain are computed using periodic boundary conditions, and are subsequently mapped back to a reduced mesh of the original micrograph. Alternatively, effective isotropic properties are generated using a semi-analytical method, based on averaged Hashin–Shtrikman bounds with fractions determined via pixel summation. The chosen discretization strategy (pixelwise or partially smoothed) is shown to introduce an uncertainty in effective properties lower than 2% for the edge-case of a finite plate containing a circular hole. The methodology is applied to a aluminium alloy micrograph. It is shown that the number of elements in the aluminium model can be reduced by $$99.89\%$$ 99.89 % while not deviating from the reference model effective material properties by more than $$0.65\%$$ 0.65 % , while also retaining some of the characteristics of the stress-field. The computational time of the semi-analytical method is shown to be several orders of magnitude lower than the numerical one.


Sign in / Sign up

Export Citation Format

Share Document