Performance assessments of the material for the traction motor cores of an electric racing kart

2021 ◽  
Vol 63 (6) ◽  
pp. 519-528
Author(s):  
Uğur Demir ◽  
Zeliha Kamış Kocabıçak

Abstract This paper presents the performance assessments for the traction motor of an electric racing kart, considering the different core materials. Firstly, the appropriate traction motor type is determined as a brushless direct current motor (BLDC) due to the superior features such as torque, efficiency, cooling performance and reliability. Thereafter the BLDC traction motor is optimized in Ansys RMXprt by using Taguchi’s design of experiment (DoE) method in order to meet the vehicle requirements. The BH curves are created for steel sheet (M19_24G), amorphous (2605SA1) and soft magnetic composite (SMC) (Somaloy 1000 3P) in Ansys Maxwell Environment, which are widely used as core materials in the literature. Then, the motor models are analyzed by the finite element method in Ansys Maxwell, and the core materials that can meet the minimum requirements in terms of magnetic flux density and saturation are verified. Finally, the dynamic vehicle model is set up in Ansys Simplorer in order to evaluate the motor performances. For that purpose, a reference speed profile is created by using the measured speed from the Gothenburg carting ring, and the battery consumption characteristic and reference speed tracking performance of the motor models with different cores are evaluated in the driving cycle.

2020 ◽  
Vol 46 (3) ◽  
pp. 175-181
Author(s):  
Marcelo Bighetti Toniollo ◽  
Mikaelly dos Santos Sá ◽  
Fernanda Pereira Silva ◽  
Giselle Rodrigues Reis ◽  
Ana Paula Macedo ◽  
...  

Rehabilitation with implant prostheses in posterior areas requires the maximum number of possible implants due to the greater masticatory load of the region. However, the necessary minimum requirements are not always present in full. This project analyzed the minimum principal stresses (TMiP, representative of the compressive stress) to the friable structures, specifically the vestibular face of the cortical bone and the vestibular and internal/lingual face of the medullary bone. The experimental groups were as follows: the regular splinted group (GR), with a conventional infrastructure on 3 regular-length Morse taper implants (4 × 11 mm); and the regular pontic group (GP), with a pontic infrastructure on 2 regular-length Morse taper implants (4 × 11 mm). The results showed that the TMiP of the cortical and medullary bones were greater for the GP in regions surrounding the implants (especially in the cervical and apical areas of the same region) but they did not reach bone damage levels, at least under the loads applied in this study. It was concluded that greater stress observed in the GP demonstrates greater fragility with this modality of rehabilitation; this should draw the professional's attention to possible biomechanical implications. Whenever possible, professionals should give preference to use of a greater number of implants in the rehabilitation system, with a focus on preserving the supporting tissue with the generation of less intense stresses.


2014 ◽  
Vol 214 ◽  
pp. 143-150
Author(s):  
Piotr Graca

The paper presents numerical modeling of an Axial Active Magnetic Bearing (AAMB) based on two-dimensional (2D) magnetic field computation. The calculations, assisted by the Finite Element Method (FEM), have focused on the determination of the magnetic flux density and the magnetic force. Obtained magnetic field parameters were then measured and verified on a physical model.


Author(s):  
Wakae Kozukue ◽  
Ichiro Hagiwara ◽  
Yasuhiro Mohri

In this paper the reduction analysis of the so-called ‘booming noise’, which occurs due to the resonance of a vehicle cabin, is tried to carry out by using the finite element method. For the reduction method a Helmholtz resonator, which is well known in the field of acoustics, is attached to a vehicle cabin. The resonance frequency of a Helmholtz resonator can be varied by adjusting the length of its throat. The simply shaped Helmholtz resonator is set up to the back of the cabin according to the resonance frequency of the cabin and the frequency response of the sound pressure at a driver’s ear position is calculated by using the finite element method. It is confirmed that the acoustical characteristics of the cabin is changed largely by attaching the resonator and the sound quality is quite varied. The resonance frequency of the resonator can be considered to follow the acoustical characteristics of the cabin by using an Origami structure as a throat. So, in the future the analysis by using an Origami structure Helmholtz resonator should be performed.


2015 ◽  
Vol 64 (2) ◽  
pp. 215-226
Author(s):  
Tommi Peussa ◽  
Anouar Belahcen

AbstractThe coupling of the propagating stress wave with the eddy current model is presented. The applied stress produces magnetization in the sample that can be measured outside the sample by measuring the resulting magnetic flux density. The stress and flux density measurements are made on a mechanically excited steel bar. The problem is modelled with the finite element method for both the propagating wave and the eddy current. Three aspects are considered: eddy current model using magnetization from the measurements, coupled wave and eddy current models, and coupled different dimensions in the wave model. The measured stress can be reproduced from the measured flux density by modelling. The coupled models work both for stress and flux couplings as well as for the different dimensionality couplings.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3065
Author(s):  
Marek Przybylski ◽  
Barbara Ślusarek ◽  
Paolo Di Barba ◽  
Maria Evelina Mognaschi ◽  
Sławomir Wiak

Soft magnetic composite (SMC) materials made of iron powder are more frequently used in construction of electric actuators and motors because of their advantages with respect to Fe–Si electric steel sheets and because they have almost no powder loss. The study deals with measurements of temperature and torque of a low-power rotary switched reluctance actuator, with reference to a commercial actuator and a prototype actuator characterized by stator and rotor cores made of soft magnetic composite materials. Further power loss analysis was also conducted. To assess the actuators, magnetization characteristics and iron loss vs. magnetic flux density at a given frequency were measured according to IEC standards. Results show that the actuator made of soft magnetic composites exhibits higher efficiency and a lower temperature rise of stator and windings in comparison with the commercial actuator.


2008 ◽  
Vol 399 ◽  
pp. 153-160 ◽  
Author(s):  
Katrien Audenaert ◽  
Liviu Marsavina ◽  
Geert de Schutter

Chloride initiated reinforcement corrosion is the main durability problem for concrete structures in a marine environment. If the chlorides reach the reinforcement steel, it will depassivate and start to corrode in presence of air and water. Since the corrosion products have a larger volume than the initial products, concrete stresses are induced, leading to spalling and degradation of the concrete structures. If cracks, caused by early drying, thermal effects, shrinkage movements or overstress, are present in the concrete, the penetration of chlorides is much faster compared to uncracked concrete. In this way, the corrosion process is initiated earlier and the service life is decreasing drastically. In order to study the influence of existing cracks in concrete structures on the penetration of chlorides a test program was set up at the Magnel Laboratory for Concrete Research of Ghent University, Belgium in cooperation with the “Politehnica” University of Timisoara, Romania. The first part of the test program consists of concrete specimens with artificial cracks. The chloride penetration into the concrete was realised with a non-steady state migration test and modelled with the finite element method COSMOS/FFE Thermal software. Based on the experimental and numerical results, a crack influencing factor was determined. With this factor, the resulting service life of the cracked concrete construction is determined and compared with the original service life.


2010 ◽  
Vol 152-153 ◽  
pp. 279-283
Author(s):  
Run Bo Bai ◽  
Fu Sheng Liu ◽  
Zong Mei Xu

Contact problem, which exists widely in mechanical engineering, civil engineering, manufacturing engineering, etc., is an extremely complicated nonlinear problem. It is usually solved by the finite element method. Unlike with the traditional finite element method, it is necessary to set up contact elements for the contact analysis. In the different types of contact elements, the Goodman joint elements, which cover the surface of contacted bodies with zero thickness, are widely used. However, there are some debates on the characteristics of the attached elements of the Goodman joint elements. For that this paper studies the type, matching, and meshing of the attached elements. The results from this paper would be helpful for the finite element contact analysis.


Sign in / Sign up

Export Citation Format

Share Document