Microstructure evolution and properties of a laser cladded Ni-Based WC reinforced composite coating

2020 ◽  
Vol 62 (11) ◽  
pp. 1078-1084
Author(s):  
Dang Kaifang ◽  
Jiang Zhiqiang

Abstract Laser cladding Ni-based WC reinforced composite coating was fabricated on the surface of Q235 steel using 6 KW fiber laser. The morphology, composition, microhardness and wear resistance of the composite coating at varied contents of WC particles were studied using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), microhardness tester and a wear tester. The results show that the dilution rate of the cladding layer decreases first and then increases with an increase of WC content. When the WC content is 20 wt.-%, the dilution rate is the smallest. In the process of fiber laser cladding Ni-based WC reinforced composite coating, WC particles partially dissolve and interact with other elements to form eutectics, which exist as lumpy shapes, strips and as spherical shapes. By increasing the WC content, the structure of the cladding layer appears to be refined. The main phases of the laser cladding layer are γ-Ni, M7C3, M23C6, CrB, WC and W2C. As the WC content increases, the hardness of the cladding layer increases. When the WC mass fraction reaches 40 wt.-%, the average hardness of the composite coating can be more than five times the substrate. When the mass fraction of WC is 20 wt.-%, the wear resistance of the cladding layer is best, which is more than three times that of Ni60A coating.

2020 ◽  
Vol 976 ◽  
pp. 9-14 ◽  
Author(s):  
Wei Zhang ◽  
Qiu Hong Feng ◽  
Wei Zhong Zhang

Aiming at the problem of poor high-temperature wear-resistance of rope clamp used in super-high speed elevators, the experiments of laser cladding to prepare carbide reinforced composite coating were made. nanoTiC powder, Ni-based alloy powder were used as cladding material. The microstructure and hardness of composite coating were tested by relevant equipments. The research results show that the composite coating is made up of TiC, Cr3C2, Fe3C and Fe-Ni-Cr-C HYPERLINK "javascript:void (0);" solid solution. When the content of TiC is 10%, 30%, the morphology of TiC is presented as dendrite-like and the morphology of HYPERLINK "javascript:void (0);" solid solution is presented as cellular-like. When the content of TiC is 50%, the morphology of TiC is presented as block-like, lath-like. There are some microcracks on grain boundaries. At the content of 30%, laser power 1.5KW, scanning speed 600mm/min, the laser cladding has no crack and hole. The average hardness of composite coating is 701HV0.2. Using this technology to the surface strengthening of elevator parts, the wear resistance and service life can be greatly improved.


2012 ◽  
Vol 19 (03) ◽  
pp. 1250017 ◽  
Author(s):  
PENG LIU ◽  
YUANBIN ZHANG ◽  
HUI LUO ◽  
YUSHUANG HUO

In this study, Al–Ti–Co was used to improve the surface performance of pure Ti . Laser cladding is an important surface modification technique, which can be used to improve the surface performance of pure Ti . Laser cladding of the Al–Ti–Co + TiB2 pre-placed powders on pure Ti can form ceramics reinforced the composite coating, which improved the wear resistance of the substrate. Characteristics of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and wear tests. And the laser-cladded coating can also have major dilution from the substrate. Due to the action of the fine grain strengthening and the phase constituent, the wear resistance and microhardness of pure Ti surface were greatly improved.


2012 ◽  
Vol 19 (02) ◽  
pp. 1250009 ◽  
Author(s):  
PENG LIU ◽  
WEI GUO ◽  
DAKUI HU ◽  
HUI LUO ◽  
YUANBIN ZHANG

The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ- (Fe, Ni) , FeAl , Ti3Al , TiC , TiNi , TiC0.3N0.7 , Ti2N , SiC , Ti5Si3 and TiNi . Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Meiyan Li ◽  
Bin Han ◽  
Conghua Qi ◽  
Yong Wang ◽  
Lixin Song

The composite processing between laser cladding and low temperature (300°C) ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscope (XPS), and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists ofγ-(Fe, Ni), M23C6carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.


2011 ◽  
Vol 18 (03n04) ◽  
pp. 103-108 ◽  
Author(s):  
JIANING LI ◽  
CHUANZHONG CHEN ◽  
CUIFANG ZHANG

Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2 , leading to the formations of Ti3Al and B . This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.


2015 ◽  
Vol 1120-1121 ◽  
pp. 698-701
Author(s):  
Wei Zhang

The experiment of laser cladding on the surface of Cr12 mold steel was made. Ni-coated nano-Al2O3 particles powder was used as cladding material. The microstructure and hardness of laser cladding layer were tested. The research showed that the compact cladding layer without crack, gas hole and other defects could be made by laser cladding. The cladding layer was made up of three phases, Fe-Ni solid solution, Fe-Cr solid solution and nano-Al2O3 particle. nano-Al2O3 particles enhanced the inhomogeneous nucleation of Fe-based alloy, refined the crystal grains and strengthened the mechanical properties of cladding layer. The average hardness of cladding zone was 900 HV0.2 which was 2.2 times higher than that of substrate.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1279 ◽  
Author(s):  
Xiangchun Hou ◽  
Dong Du ◽  
Baohua Chang ◽  
Ninshu Ma

Fe-based amorphous alloys with excellent mechanical properties are suitable for preparing wear resistant coatings by laser cladding. In this study, a novel Fe-based amorphous coating was prepared by laser cladding on 3Cr13 stainless steel substrates. The influence of scanning speeds on the microstructures and properties of the coatings was investigated. The microstructure compositions and phases were analyzed by scanning electron microscope, electron probe microanalyzer, and x-ray diffraction respectively. Results showed that the microstructures of the coatings changed significantly with the increase of scanning speeds. For a scanning speed of 6 mm/s, the cladding layer was a mixture of amorphous and crystalline regions. For a scanning speed of 8 mm/s, the cladding layer was mainly composed of block grain structures. For a scanning speed of 10 mm/s, the cladding layer was composed entirely of dendrites. Different dilution rates at the bonding zones were the main reasons for the microstructure change for different claddings. For all three scanning speeds, the coatings had higher hardness and wear resistance when compared with the substrate; as the scanning speed increased, the hardness and wear resistance of the coatings gradually decreased due to the change in microstructure.


2011 ◽  
Vol 295-297 ◽  
pp. 1315-1318
Author(s):  
Shang Lei Yang ◽  
Feng Guang Hu ◽  
Qing Lin Lin

By using laser cladding technology, a nano-Y2O3/Co-based composite coating was prepared in the Ni-based alloys substrate with Nano-Y2O3 and cobalt based alloys powder. The microstructure, micro-hardness wear resistance of the composite coating were researched by scanning electron microscopy (SEM) and other testing methods. The results show that the micro-hardness of laser cladding is HV868, and the welded surfacing layer is only HV512. Wearing values are decreased by 25.6 mg of the surfacing layer to 0.5 mg of the laser cladding layer in the wear testing of 40 minutes. The wear resistance of laser cladding layer is 51 times of the the wear resistance of the surfacing layer using the Co-28Cr-4W-1C electrode. The microstructure of laser cladding layer consists of the fusion zone, the fine equiaxed dendrite zone and the coarse crystalline zone.


2018 ◽  
Vol 913 ◽  
pp. 390-395
Author(s):  
Yong Tian Wang ◽  
Jia Wei Mo ◽  
Lu Lu Tao

A large thick Fe based amorphous composite coating was deposited on the carbon steel substrate by laser cladding method. The phase composition and microstructure are characterized using X-ray diffraction and scanning electron microscope, respectively. The results demonstrate that the large thick laser cladding coating has a typical layered structure mainly consisting of amorphous and nanocrystal phases. The wear resistance and microhardness property are tested by the Vickers hardness tester and MLS-225 type wet sand rubber wheel abrasion tester. The results show that the large thick laser cladding coating has excellent wear resistance and hardness.


Sign in / Sign up

Export Citation Format

Share Document