Prediction of the optimal FSW process parameters for joints using machine learning techniques

2021 ◽  
Vol 63 (12) ◽  
pp. 1104-1111
Author(s):  
Furkan Sarsilmaz ◽  
Gürkan Kavuran

Abstract In this work, a couple of dissimilar AA2024/AA7075 plates were experimentally welded for the purpose of considering the effect of friction-stir welding (FSW) parameters on mechanical properties. First, the main mechanical properties such as ultimate tensile strength (UTS) and hardness of welded joints were determined experimentally. Secondly, these data were evaluated through modeling and the optimization of the FSW process as well as an optimal parametric combination to affirm tensile strength and hardness using a support vector machine (SVM) and an artificial neural network (ANN). In this study, a new ANN model, including the Nelder-Mead algorithm, was first used and compared with the SVM model in the FSW process. It was concluded that the ANN approach works better than SVM techniques. The validity and accuracy of the proposed method were proved by simulation studies.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Hongbo Zhao ◽  
Zenghui Huang ◽  
Zhengsheng Zou

Stress-strain relationship of geomaterials is important to numerical analysis in geotechnical engineering. It is difficult to be represented by conventional constitutive model accurately. Artificial neural network (ANN) has been proposed as a more effective approach to represent this complex and nonlinear relationship, but ANN itself still has some limitations that restrict the applicability of the method. In this paper, an alternative method, support vector machine (SVM), is proposed to simulate this type of complex constitutive relationship. The SVM model can overcome the limitations of ANN model while still processing the advantages over the traditional model. The application examples show that it is an effective and accurate modeling approach for stress-strain relationship representation for geomaterials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fengqin Chen ◽  
Jinbo Huang ◽  
Xianjun Wu ◽  
Xiaoli Wu ◽  
Arash Arabmarkadeh

Biosurfactants are a series of organic compounds that are composed of two parts, hydrophobic and hydrophilic, and since they have properties such as less toxicity and biodegradation, they are widely used in the food industry. Important applications include healthy products, oil recycling, and biological refining. In this research, to calculate the curves of rhamnolipid adsorption compared to Amberlite XAD-2, the least-squares vector machine algorithm has been used. Then, the obtained model is formed by 204 adsorption data points. Various graphical and statistical approaches are applied to ensure the correctness of the model output. The findings of this study are compared with studies that have used artificial neural network (ANN) and data group management method (GMDH) models. The model used in this study has a lower percentage of absolute mean deviation than ANN and GMDH models, which is estimated to be 1.71%.The least-squares support vector machine (LSSVM) is very valuable for investigating the breakthrough curve of rhamnolipid, and it can also be used to help chemists working on biosurfactants. Moreover, our graphical interface program can assist everyone to determine easily the curves of rhamnolipid adsorption on Amberlite XAD-2.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3100
Author(s):  
Anusha Mairpady ◽  
Abdel-Hamid I. Mourad ◽  
Mohammad Sayem Mozumder

The selection of nanofillers and compatibilizing agents, and their size and concentration, are always considered to be crucial in the design of durable nanobiocomposites with maximized mechanical properties (i.e., fracture strength (FS), yield strength (YS), Young’s modulus (YM), etc). Therefore, the statistical optimization of the key design factors has become extremely important to minimize the experimental runs and the cost involved. In this study, both statistical (i.e., analysis of variance (ANOVA) and response surface methodology (RSM)) and machine learning techniques (i.e., artificial intelligence-based techniques (i.e., artificial neural network (ANN) and genetic algorithm (GA)) were used to optimize the concentrations of nanofillers and compatibilizing agents of the injection-molded HDPE nanocomposites. Initially, through ANOVA, the concentrations of TiO2 and cellulose nanocrystals (CNCs) and their combinations were found to be the major factors in improving the durability of the HDPE nanocomposites. Further, the data were modeled and predicted using RSM, ANN, and their combination with a genetic algorithm (i.e., RSM-GA and ANN-GA). Later, to minimize the risk of local optimization, an ANN-GA hybrid technique was implemented in this study to optimize multiple responses, to develop the nonlinear relationship between the factors (i.e., the concentration of TiO2 and CNCs) and responses (i.e., FS, YS, and YM), with minimum error and with regression values above 95%.


2020 ◽  
Vol 10 (5) ◽  
pp. 1691 ◽  
Author(s):  
Deliang Sun ◽  
Mahshid Lonbani ◽  
Behnam Askarian ◽  
Danial Jahed Armaghani ◽  
Reza Tarinejad ◽  
...  

Despite the vast usage of machine learning techniques to solve engineering problems, a very limited number of studies on the rock brittleness index (BI) have used these techniques to analyze issues in this field. The present study developed five well-known machine learning techniques and compared their performance to predict the brittleness index of the rock samples. The comparison of the models’ performance was conducted through a ranking system. These techniques included Chi-square automatic interaction detector (CHAID), random forest (RF), support vector machine (SVM), K-nearest neighbors (KNN), and artificial neural network (ANN). This study used a dataset from a water transfer tunneling project in Malaysia. Results of simple rock index tests i.e., Schmidt hammer, p-wave velocity, point load, and density were considered as model inputs. The results of this study indicated that while the RF model had the best performance for training (ranking = 25), the ANN outperformed other models for testing (ranking = 22). However, the KNN model achieved the highest cumulative ranking, which was 37. The KNN model showed desirable stability for both training and testing. However, the results of validation stage indicated that RF model with coefficient of determination (R2) of 0.971 provides higher performance capacity for prediction of the rock BI compared to KNN model with R2 of 0.807 and ANN model with R2 of 0.860. The results of this study suggest a practical use of the machine learning models in solving problems related to rock mechanics specially rock brittleness index.


Author(s):  
Amel Bouakkadia ◽  
Noureddine Kertiou ◽  
Rana Amiri ◽  
Youssouf Driouche ◽  
Djelloul Messadi

The partitioning tendency of pesticides, in these study herbicides in particular, into different environmental compartments depends mainly of the physic-chemical properties of the pesticides itself. Aqueous solubility (S) indicates the tendency of a pesticide to be removed from soil by runoff or irrigation and to reach surface water. The experimental procedure determining aqueous solubility of pesticides is very expensive and difficult. QSPR methods are often used to estimate the aqueous solubility of herbicides. The artificial neural network (ANN) and support vector machine (SVM) methods, every time associated with genetic algorithm (GA) selection of the most important variable, were used to develop QSPR models to predict the aqueous solubility of a series 80 herbicides. The values of log S of the studied compounds were well correlated with de descriptors. Considering the pertinent descriptors, a Pearson Correlation Squared (R2) coefficient of 0.8 was obtained for the ANN model with a structure of 5-3-1 and 0.8 was obtained for the SVM model using the RBF function for the optimal parameters values: C = 11.12; ? = 0.1111 and ? = 0.222.


2021 ◽  
Author(s):  
Wesam Salah Alaloul ◽  
Abdul Hannan Qureshi

Nowadays, the construction industry is on a fast track to adopting digital processes under the Industrial Revolution (IR) 4.0. The desire to automate maximum construction processes with less human interference has led the industry and research community to inclined towards artificial intelligence. This chapter has been themed on automated construction monitoring practices by adopting material classification via machine learning (ML) techniques. The study has been conducted by following the structure review approach to gain an understanding of the applications of ML techniques for construction progress assessment. Data were collected from the Web of Science (WoS) and Scopus databases, concluding 14 relevant studies. The literature review depicted the support vector machine (SVM) and artificial neural network (ANN) techniques as more effective than other ML techniques for material classification. The last section of this chapter includes a python-based ANN model for material classification. This ANN model has been tested for construction items (brick, wood, concrete block, and asphalt) for training and prediction. Moreover, the predictive ANN model results have been shared for the readers, along with the resources and open-source web links.


2019 ◽  
Vol 8 (3) ◽  
pp. 6077-6081 ◽  

Plant disease identification and classification is major area of research as majority of people in India depend on agriculture for their main source of income and for food. Identification of the diseases in any crops is challenging since manual identification techniques being used in this are based on the experts advises which may not be efficient. Based on leaf features decisions about variety of diseases are taken. In this paper an automated framework is introduced which can be used to detect and classify the diseases in the leaf accurately. Leaf images are acquired by using digital camera. Pre-processing techniques, segmentation and feature extraction are performed on the acquired images. The features are passed on to the classifiers to classify the diseases. This work has been proposed to classify and distinguish the leaf sample based on its features. The proposed work is carried out with Artificial Neural Network (ANN), Support Vector Machine (SVM) and Naive Bayes classifiers to analyze the result. For given dataset ANN performed better than the other two classifiers


Author(s):  
Kanhaiya Sharma ◽  
Ganga Prasad Pandey

This paper presents how machine learning techniques may be applied in the process of designing a compact dual-band H-shaped rectangular microstrip antenna (RMSA) operating in 0.75–2.20 GHz and 3.0–3.44 GHz frequency ranges. In the design process, the same dimensions of upper and lower notches are incorporated, with the centered position right in the middle. Notch length and width are verified for investigating the antenna. An artificial neural network (ANN) model is developed from the simulated dataset, and is used for shape prediction. The same dataset is used to create a mathematical model as well. The predicted outcome is compared and it is determined that the model relying on ANN offers better results


2010 ◽  
Vol 29-32 ◽  
pp. 973-978 ◽  
Author(s):  
Ming Chen ◽  
Yong Li ◽  
Jun Xie

First arrivals detecting on seismic record is important at all times. A novel support vector machine (SVM)-based method for seismic first-arrival pickup is proposed in this research. Firstly, the multi-resolution wavelet decomposition is used to de-noise the seismic record. And then, feature vectors are extracted from the denoise data. Finally, both SVM and artificial neural network (ANN) models are employed to train and predict the feature vectors. Experimental results demonstrate that the SVM model gives better accuracy than the ANN model. It is promising that the novel method is very prospective.


2011 ◽  
Vol 3 (4) ◽  
Author(s):  
Sarat Das ◽  
Pijush Samui ◽  
Shakilu Khan ◽  
Nagarathnam Sivakugan

AbstractStability with first time or reactivated landslides depends upon the residual shear strength of soil. This paper describes prediction of the residual strength of soil based on index properties using two machine learning techniques. Different Artificial Neural Network (ANN) models and Support Vector Machine (SVM) techniques have been used. SVM aims at minimizing a bound on the generalization error of a model rather than at minimizing the error on the training data only. The ANN models along with their generalizations capabilities are presented here for comparisons. This study also highlights the capability of SVM model over ANN models for the prediction of the residual strength of soil. Based on different statistical parameters, the SVM model is found to be better than the developed ANN models. A model equation has been developed for prediction of the residual strength based on the SVM for practicing geotechnical engineers. Sensitivity analyses have been also performed to investigate the effects of different index properties on the residual strength of soil.


Sign in / Sign up

Export Citation Format

Share Document