scholarly journals Colloidal nanocrystals for quality lighting and displays: milestones and recent developments

Nanophotonics ◽  
2016 ◽  
Vol 5 (1) ◽  
pp. 74-95 ◽  
Author(s):  
Talha Erdem ◽  
Hilmi Volkan Demir

AbstractRecent advances in colloidal synthesis of nanocrystals have enabled high-quality high-efficiency light-emitting diodes, displays with significantly broader color gamut, and optically-pumped lasers spanning the whole visible regime. Here we review these colloidal platforms covering the milestone studies together with recent developments. In the review, we focus on the devices made of colloidal quantum dots (nanocrystals), colloidal quantum rods (nanorods), and colloidal quantum wells (nanoplatelets) as well as those of solution processed perovskites and phosphor nanocrystals. The review starts with an introduction to colloidal nanocrystal photonics emphasizing the importance of colloidal materials for light-emitting devices. Subsequently,we continue with the summary of important reports on light-emitting diodes, in which colloids are used as the color converters and then as the emissive layers in electroluminescent devices. Also,we review the developments in color enrichment and electroluminescent displays. Next, we present a summary of important reports on the lasing of colloidal semiconductors. Finally, we summarize and conclude the review presenting a future outlook.

2019 ◽  
Author(s):  
Baiquan Liu ◽  
Yemliha Altintas ◽  
Lin Wang ◽  
Sushant Shendre ◽  
Manoj Sharma ◽  
...  

<p> Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd<sub>0.25</sub>Zn<sub>0.75</sub>S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m<sup>-2</sup>, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.</p>


2020 ◽  
Vol 8 (3) ◽  
pp. 883-888 ◽  
Author(s):  
Yuan Li ◽  
Zhiheng Xing ◽  
Yulin Zheng ◽  
Xin Tang ◽  
Wentong Xie ◽  
...  

High quantum efficiency LEDs with InGaN/GaN/AlGaN/GaN MQWs have been demonstrated. The proposed GaN interlayer barrier can not only increase the concentration and the spatial overlap of carriers, but also improve the quality of the MQWs.


Author(s):  
Baiquan Liu ◽  
Yemliha Altintas ◽  
Lin Wang ◽  
Sushant Shendre ◽  
Manoj Sharma ◽  
...  

<p> Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd<sub>0.25</sub>Zn<sub>0.75</sub>S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m<sup>-2</sup>, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.</p>


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7890
Author(s):  
Friedhard Römer ◽  
Martin Guttmann ◽  
Tim Wernicke ◽  
Michael Kneissl ◽  
Bernd Witzigmann

In the past years, light-emitting diodes (LED) made of GaN and its related ternary compounds with indium and aluminium have become an enabling technology in all areas of lighting. Visible LEDs have yet matured, but research on deep ultraviolet (UV) LEDs is still in progress. The polarisation in the anisotropic wurtzite lattice and the low free hole density in p-doped III-nitride compounds with high aluminium content make the design for high efficiency a critical step. The growth kinetics of the rather thin active quantum wells in III-nitride LEDs makes them prone to inhomogeneous broadening (IHB). Physical modelling of the active region of III-nitride LEDs supports the optimisation by revealing the opaque active region physics. In this work, we analyse the impact of the IHB on the luminescence and carrier transport III-nitride LEDs with multi-quantum well (MQW) active regions by numerical simulations comparing them to experimental results. The IHB is modelled with a statistical model that enables efficient and deterministic simulations. We analyse how the lumped electronic characteristics including the quantum efficiency and the diode ideality factor are related to the IHB and discuss how they can be used in the optimisation process.


Nano Letters ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 3568-3576 ◽  
Author(s):  
Lintao Wang ◽  
Zhifeng Shi ◽  
Zhuangzhuang Ma ◽  
Dongwen Yang ◽  
Fei Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document