scholarly journals Non-linear interferometry with infrared metasurfaces

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anna V. Paterova ◽  
Dmitry A. Kalashnikov ◽  
Egor Khaidarov ◽  
Hongzhi Yang ◽  
Tobias W. W. Mass ◽  
...  

Abstract The optical elements comprised of sub-diffractive light scatterers, or metasurfaces, hold a promise to reduce the footprint and unfold new functionalities of optical devices. A particular interest is focused on metasurfaces for manipulation of phase and amplitude of light beams. Characterisation of metasurfaces can be performed using interferometry, which, however, may be cumbersome, specifically in the infrared (IR) range. Here, we realise a new method for characterising metasurfaces operating in the telecom IR range using accessible components for visible light. Correlated IR and visible photons are launched into a non-linear interferometer so that the phase profile, imposed by the metasurface on the IR photons, modifies the interference at the visible photon wavelength. Furthermore, we show that this concept can be used for broadband manipulation of the intensity profile of a visible beam using a single IR metasurface. Our method unfolds the potential of quantum interferometry for the characterization of advanced optical elements.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
R. Todorov ◽  
J. Tasseva ◽  
V. Lozanova ◽  
A. Lalova ◽  
Tz. Iliev ◽  
...  

A review is given on the application of the reflectance ellipsometry for optical characterization of bulk materials and thin films with thickness betweenλ/20 and 2λ(atλ=632.8 nm). The knowledge of the optical constants (refractive index,n, and extinction coefficient,k) of thin films is of a great importance from the point of view of modelling and controlling the manufacture of various optical elements, such as waveguides, diffraction gratings, and microlenses. The presented results concern the optical properties of thin films from multicomponent chalcogenide glasses on the base of As2S3and GeS2determined by multiple-angle-of-incidence ellipsometry and regarded as a function of the composition and thickness. The homogeneity of the films is verified by applying single-angle calculations at different angles. Due to decomposition of the bulk glass during thermal evaporation, an optical inhomogeneity of the thin As (Ge)-S-Bi(Tl) films is observed. The profile ofnin depth of thin As-S-Tl (Bi) films was investigated by evaporation of discrete layers. It is demonstrated that homogenous layers from the previous compounds with controlled composition can be deposited by coevaporation of As2S3and metals or their compounds (Bi, Tl, In2S3).


Author(s):  
Franz Schäfers ◽  
Andrey Sokolov

The At-Wavelength Metrology Facility at BESSY-II is dedicated to short-term characterization of novel UV, EUV and XUV optical elements, such as diffraction gratings, mirrors, multilayers and nano-optical devices like reflection zone plates. It consists of an Optics Beamline PM-1 and a Reflectometer in a clean-room hutch as a fixed end station. The bending magnet Beamline is a Plane Grating Monochromator beamline (c-PGM) equipped with an SX700 monochromator. The beamline is specially tailored for efficient high-order suppression and stray light reduction. The versatile 11-axes UHV-Reflectometer can house life-sized optical elements, which are fully adjustable and of which the reflection properties can be measured in the full incidence angular range as well as in the full azimuthal angular range to determine polarization properties.


Author(s):  
Y. Cheng ◽  
J. Liu ◽  
M.B. Stearns ◽  
D.G. Steams

The Rh/Si multilayer (ML) thin films are promising optical elements for soft x-rays since they have a calculated normal incidence reflectivity of ∼60% at a x-ray wavelength of ∼13 nm. However, a reflectivity of only 28% has been attained to date for ML fabricated by dc magnetron sputtering. In order to determine the cause of this degraded reflectivity the microstructure of this ML was examined on cross-sectional specimens with two high-resolution electron microscopy (HREM and HAADF) techniques.Cross-sectional specimens were made from an as-prepared ML sample and from the same ML annealed at 298 °C for 1 and 100 hours. The specimens were imaged using a JEM-4000EX TEM operating at 400 kV with a point-to-point resolution of better than 0.17 nm. The specimens were viewed along Si [110] projection of the substrate, with the (001) Si surface plane parallel to the beam direction.


Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6005-6013
Author(s):  
Mahdi Iranmanesh ◽  
Fatemeh Soleimany

In this paper we use the concept of numerical range to characterize best approximation points in closed convex subsets of B(H): Finally by using this method we give also a useful characterization of best approximation in closed convex subsets of a C*-algebra A.


2021 ◽  
Vol 58 (1) ◽  
pp. 68-82
Author(s):  
Jean-Renaud Pycke

AbstractWe give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.


Author(s):  
Dominik Wehrli ◽  
Matthieu Génévriez ◽  
Frédéric Merkt

We present a new method to study doubly charged molecules relying on high-resolution spectroscopy of the singly charged parent cation, and report on the first spectroscopic characterization of a thermodynamically stable diatomic dication, MgAr2+.


Sign in / Sign up

Export Citation Format

Share Document