scholarly journals Exact solutions of bending deflection for single-walled BNNTs based on the classical Euler–Bernoulli beam theory

2020 ◽  
Vol 9 (1) ◽  
pp. 961-970
Author(s):  
Dong Yawei ◽  
Zhang Yang ◽  
Yan Jianwei

AbstractAt the nanolevel, a classical continuum approach seems to be inapplicable to evaluate the mechanical behaviors of materials. With the introduction of scale parameter, the scale effect can be reasonably described by the modified continuum theory. For boron nitride nanotubes (BNNTs), the scale effect can be reflected by the curvature and the dangling bonds at both ends, mainly the former for a slender tube. This study aims to achieve a good capability of classical Euler–Bernoulli theory to directly predict the bending behaviors of single-walled BNNTs without introducing scale parameters. Elastic properties of BNNTs involving the scale effect have been first conducted by using an atomistic-continuum multiscale approach, which is directly constructed based on the atomic force field. The well-determined hexagonal boron nitride sheet is inherited in the present study of single-walled BNNTs which can be viewed as rolling up a boron nitride sheet into a seamless hollow cylinder. Euler–Bernoulli theory solution of bending deflection on the basis of the present thickness is found to be much closer to the atomistic-continuum simulation results than the commonly used interlayer space. Case studies with different tubular lengths, radii and constraints are investigated, and from which the yielded scattered scale parameters in modified continuum theories are discussed.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ruishi Qi ◽  
Ning Li ◽  
Jinlong Du ◽  
Ruochen Shi ◽  
Yang Huang ◽  
...  

AbstractDirectly mapping local phonon dispersion in individual nanostructures can advance our understanding of their thermal, optical, and mechanical properties. However, this requires high detection sensitivity and combined spatial, energy and momentum resolutions, thus has been elusive. Here, we demonstrate a four-dimensional electron energy loss spectroscopy technique, and present position-dependent phonon dispersion measurements in individual boron nitride nanotubes. By scanning the electron beam in real space while monitoring both the energy loss and the momentum transfer, we are able to reveal position- and momentum-dependent lattice vibrations at nanometer scale. Our measurements show that the phonon dispersion of multi-walled nanotubes is locally close to hexagonal-boron nitride crystals. Interestingly, acoustic phonons are sensitive to defect scattering, while optical modes are insensitive to small voids. This work not only provides insights into vibrational properties of boron nitride nanotubes, but also demonstrates potential of the developed technique in nanoscale phonon dispersion measurements.


2005 ◽  
Vol 202 (1) ◽  
pp. 3-3 ◽  
Author(s):  
Wei Chen ◽  
Kian Ping Loh ◽  
Ming Lin ◽  
Rong Liu ◽  
Andrew T. S. Wee

2020 ◽  
Vol 2 (11) ◽  
pp. 4996-5014
Author(s):  
Ruth Sang Jones ◽  
Barbara Maciejewska ◽  
Nicole Grobert

This review explores the rapidly emerging field of hetero-nanotubes consisting of a carbon core and hexagonal boron nitride shell.


CrystEngComm ◽  
2018 ◽  
Vol 20 (19) ◽  
pp. 2713-2719 ◽  
Author(s):  
Vijayesh Kumar ◽  
Palash Chandra Maity ◽  
Debrupa Lahiri ◽  
Indranil Lahiri

Copper nanoparticles were introduced as the catalyst for the direct growth of BNNTs on a metallic substrate leading to their direct application in electronics.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yong-Jin Cho ◽  
Alex Summerfield ◽  
Andrew Davies ◽  
Tin S. Cheng ◽  
Emily F. Smith ◽  
...  

Abstract We demonstrate direct epitaxial growth of high-quality hexagonal boron nitride (hBN) layers on graphite using high-temperature plasma-assisted molecular beam epitaxy. Atomic force microscopy reveals mono- and few-layer island growth, while conducting atomic force microscopy shows that the grown hBN has a resistance which increases exponentially with the number of layers, and has electrical properties comparable to exfoliated hBN. X-ray photoelectron spectroscopy, Raman microscopy and spectroscopic ellipsometry measurements on hBN confirm the formation of sp2-bonded hBN and a band gap of 5.9 ± 0.1 eV with no chemical intermixing with graphite. We also observe hexagonal moiré patterns with a period of 15 nm, consistent with the alignment of the hBN lattice and the graphite substrate.


2010 ◽  
Vol 247 (11-12) ◽  
pp. 3076-3079 ◽  
Author(s):  
Gurvan Brasse ◽  
Sylvain Maine ◽  
Aurélie Pierret ◽  
Périne Jaffrennou ◽  
Brigitte Attal-Trétout ◽  
...  

MRS Advances ◽  
2019 ◽  
Vol 4 (10) ◽  
pp. 601-608
Author(s):  
N. Khan ◽  
E. Nour ◽  
J. Mondoux ◽  
S. Liu ◽  
J.H. Edgar ◽  
...  

ABSTRACTHexagonal boron nitride (hBN), a two dimensional (2D) material, has emerged as an important substrate and dielectric for electronic, optoelectronic, and photonic devices based on graphene and other atomically thin two dimensional materials. Here we report on the initial oxidation of (0001) hBN single crystals in ambient air as functions of temperature and time, as determined by atomic force microscopy (AFM) and scanning electron microscope with energy dispersive X-ray spectroscopy (SEM/EDS). For oxidation times of 20 minutes, the first evidence of oxidation appears at 900°C, with the formation of shallow, hexagonal-, and irregular-shaped pits that are less than 100 nm across and several nanometer deep. Oxidation at 1100°C for 20 minutes produced 1.0-2.0-micron size pits with flat and pointed bottoms that were approximately hexagonal-shaped, but with rough and irregular edges, and multiple interior steps. Oxidation was not uniform on the surface of hBN, but starts where dislocations in the crystal intersected the surfaces. Pit depth increased linearly with temperature and oxidation times. In addition to the surface pits, small particles formed on the surface. Elemental analysis of the thermally oxidized hBN crystals by SEM/EDS revealed the major elements of these particles were boron and oxygen.


MRS Advances ◽  
2019 ◽  
Vol 5 (14-15) ◽  
pp. 709-716
Author(s):  
Haley B. Harrison ◽  
Jeffrey R. Alston

AbstractBoron nitride nanotubes (BNNTs) and hexagonal boron nitride platelets (h-BNs) have received considerable attention for aerospace insulation applications due to their exceptional chemical and thermal stability. Presently, making BN nanomaterials compatible with polymer and composite matrices is challenging. Due to their inert and highly stable structure, h-BN and BNNTs are difficult to covalently functionalize. In this work, we present a novel sonochemical technique that enables covalent attachment of fluoroalkoxy substituents to the surface of BN nanomaterials in a controlled and metered process. Covalent functionalization is confirmed via colloidal stability analysis, FT-IR, and x-ray photoelectron spectroscopy (XPS).


Sign in / Sign up

Export Citation Format

Share Document