scholarly journals Group 14 metalloles condensed with heteroaromatic systems

2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Joji Ohshita

AbstractThere has been keen interest in group 14 metalloles as building units of conjugated organic functional materials. This short review summarizes our recent work on group 14 metalloles condensed with heteroaromatic systems, including thiophene and pyridine. These condensed metalloles show interesting properties depending on both the group 14 metallole elements and the heteroaromatic systems. High planarity of the condensed systems and interaction between the element σ*-orbital and the heteroaromatic π*-orbital enhance the conjugation in these systems leading to their potential applications as functional materials, such as carrier transporting materials and emissive materials.

2020 ◽  
Vol 04 ◽  
Author(s):  
A. Guillermo Bracamonte

: Graphene as Organic material showed special attention due to their electronic and conductive properties. Moreover, its highly conjugated chemical structures and relative easy modification permitted varied design and control of targeted properties and applications. In addition, this Nanomaterial accompanied with pseudo Electromagnetic fields permitted photonics, electronics and Quantum interactions with their surrounding that generated new materials properties. In this context, this short Review, intends to discuss many of these studies related with new materials based on graphene for light and electronic interactions, conductions, and new modes of non-classical light generation. It should be highlighted that these new materials and metamaterials are currently in progress. For this reason it was showed and discussed some representative examples from Fundamental Research with Potential Applications as well as for their incorporations to real Advanced devices and miniaturized instrumentation. In this way, it was proposed this Special issue entitled “Design and synthesis of Hybrids Graphene based Metamaterials”, in order to open and share the knowledge of the Current State of the Art in this Multidisciplinary field.


2021 ◽  
Author(s):  
Anurag Mukherjee ◽  
Suhrit Ghosh

Naphthalene-diimide (NDI) derived building blocks have been explored extensively for supramolecular assembly as they exhibit attractive photophysical properties, suitable for applications in organic optoelectronics. Core-substituted derivatives of the NDI chromophore (cNDI) differ significantly from the parent NDI dye in terms of optical and redox properties. Adequate molecular engineering opportunities and substitution-dependent tunable optoelectronic properties make cNDI derivatives highly promising candidates for supramolecular assembly and functional material. This short review discusses recent development in the area of functional supramolecular assemblies based on cNDIs and related molecules.


2021 ◽  
Vol 25 ◽  
Author(s):  
Jun Zheng ◽  
Yan Mei Jin ◽  
Xi Nan Yang ◽  
Lin Zhang ◽  
Dao Fa Jiang ◽  
...  

: Single-crystal X-ray diffraction analysis, nuclear magnetic resonance (NMR), and other characterization methods are used to characterize the complexes formed by cyclopentano-cucurbit[6]uril (abbreviated as CyP6Q[6]) as a host interacting with p-aminobenzenesulfonamide (G1), 4,4'-diaminobiphenyl (G2), and (E)-4,4'-diamino-1,2-diphenylethene (G3) as guests, respectively. The experimental results show that these three aromatic amine molecules have the same interaction mode with CyP6Q[6], interacting with its negatively electric potential portals. The supramolecular interactions include non-covalent interactions of hydrogen bonding and ion-dipole between host and guest molecules. CdCl2 acts as a structureinducing agent to form self-assemblies of multi-dimensional and multi-level supramolecular frameworks that may have potential applications in various functional materials.


1998 ◽  
Vol 275 (3) ◽  
pp. F328-F331 ◽  
Author(s):  
Dennis Brown ◽  
Toshiya Katsura ◽  
Corinne E. Gustafson

Aquaporins (AQPs) are a family of functionally important water channel proteins that are of special cell biological interest because of their diverse intracellular targeting and trafficking properties. AQPs have been found in many different cells and tissues. This short review summarizes recent work that addresses the regulation of AQP2 trafficking in response to vasopressin.


2018 ◽  
Vol 74 (11) ◽  
pp. 1434-1439
Author(s):  
Hong-Tao Zhang ◽  
Xiao-Long Wang

In recent years, much initial interest and enthusiasm has focused on the self-assembly of coordination polymers due to the aesthetics of their crystalline architectures and their potential applications as new functional materials. As part of an exploration of chiral coordination polymers, a new twofold interpenetrated two-dimensional (2D) coordination polymer, namely, poly[[tetraaquabis[μ3-(2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionato-κ5 O,O′:O′′,O′′′:O′′]dicadmium(II)] trihydrate], {[Cd2(C14H14N2O6)2(H2O)4]·3H2O} n , has been synthesized by the reaction of Cd(CH3COO)2·2H2O with the designed ligand (2R,2′R)-2,2′-(benzene-1,4-dicarboxamido)dipropionic acid (H2 L). The compound has been structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analysis. In the crystal structure, each CdII cation binds to three carboxylate groups from two crystallographically independent L 2− dianions. Four carboxylate groups link two crystallographically independent cadmium cations into a 4,4-connected secondary building unit (SBU). The resulting SBUs are extended into a two-dimensional folding sheet via the terephthalamide moiety of the ligand as a spacer, which can be simplified as a (4,4)-connected 4,4L15 net with the point symbol (3.53.62)(32.52.62). In the lattice, two independent folding sheets interpenetrate each other to yield a double-sheet layer. The resulting 2D layers pack in parallel arrays through intermolecular hydrogen bonds and interlayer π–π interactions. The thermal stability and photoluminescence properties of the title compound have been investigated and it exhibits an enhanced fluorescence emission and a longer lifetime compared with free H2 L.


2021 ◽  
Vol 43 (1) ◽  
pp. 67-67
Author(s):  
Qiang Yang Qiang Yang ◽  
Wei Gong Wei Gong ◽  
Xiaowei Cui Xiaowei Cui ◽  
Chunsheng Zhou Chunsheng Zhou

The cellulose paper-based functional materials modified by Zn-NDI and Cu-NDI were prepared by the coating method. The chemical structures were characterized by FTIR, XRD, UV-vis and SEM, and the photochromic properties of the composite functional materials were studied. The results showed that Zn-NDI and Cu-NDI were successfully prepared and retained on the surface of copy paper, the wavelength of photochromic reaction is between 300-400 nm of MOFs materials. Optical analysis confirmed that the NDI/paper, Zn-NDI/paper and Cu-NDI/paper changed from tan to wheat, light green to olive, and dark tan to brown after 60 seconds of exposure to hernia light irradiations, the MOFs coated paper returned to its original color when it was placed in the dark for 4 hours. The above results indicated that the prepared Zn-NDI and Cu-NDI coated paper composites exhibited excellent photochromic ability and had potential applications in the field of anti-counterfeiting packaging materials.


Synthesis ◽  
2020 ◽  
Vol 52 (22) ◽  
pp. 3326-3336
Author(s):  
Hideki Yorimitsu ◽  
Aya Yoshimura ◽  
Yohji Misaki

AbstractSulfur-containing functional π-conjugated cores play key roles in materials science, mostly due to their unique electrochemical and photophysical properties. Among these, the excellent electron donor tetrathiafulvalene (TTF) has occupied a central position since the emergence of organic electronics. Peripheral C–H modification of this highly useful sulfur-containing motif has resulted in the efficient creation of new molecules that expand the applications of TTFs. This Short Review begins with the development of the palladium-catalyzed direct C–H arylation of TTF. Subsequently, it summarizes the applications of this efficient C–H transformation for the straightforward synthesis of useful TTF derivatives that are employed in a variety of research fields, demonstrating that the development of a new reaction can have a significant impact on chemical science.1 Introduction2 Development of the Palladium-Catalyzed Direct C–H Arylation of TTF3 Synthesis of TTF-Based Tetrabenzoic Acid and Tetrapyridine for MOFs4 Synthesis of TTF-Based Tetrabenzaldehyde and Tetraaniline for COFs5 Tetraarylation of TTFAQ6 Synthesis of Multistage-Redox TTF Derivatives7 Miscellaneous Examples8 Conclusions


1941 ◽  
Vol 41 (1) ◽  
pp. 44-64 ◽  
Author(s):  
A. T. Masterman

1. A short synopsis of research upon application of hypochlorites to airpurification is given.2. A short review of the most recent work on this subject shows that:(a) Of the “nebulizers” employed by Baker, Finn & Twort (1940) the “Atmozon” is incapable of consistent atomizing of hypochlorites, whilst the “Aerograph” has an efficiency much below that of modern atomizers.(b) The data obtained by them, after due allowance for defective technique, can be interpreted as fully confirming the view that HOCl gas is the active germicide in hypochlorite spraying. Sterility can be approximately attained (99·75% reduction) by HOCl gas with a volumetric concentration in air, of not more than (3·5 × 109)−1.(c) The application of the “Aerosol” theory is discussed and reasons given for its non-applicability to hypochlorite spraying.(d) Alleged drawbacks to this practical application of hypochlorite air disinfection are discussed and shown to be of no practical importance.


2016 ◽  
Vol 875 ◽  
pp. 24-44
Author(s):  
Ming Guo Ma ◽  
Shan Liu ◽  
Lian Hua Fu

CaCO3 has six polymorphs such as vaterite, aragonite, calcite, amorphous, crystalline monohydrate, and hexahydrate CaCO3. CaCO3 is a typical biomineral that is abundant in both organisms and nature and has important industrial applications. Cellulose could be used as feedstocks for producing biofuels, bio-based chemicals, and high value-added bio-based materials. In the past, more attentions have been paid to the synthesis and applications of CaCO3 and cellulose/CaCO3 nanocomposites due to its relating properties such as mechanical strength, biocompatibility, and biodegradation, and bioactivity, and potential applications including biomedical, antibacterial, and water pretreatment fields as functional materials. A variety of synthesis methods such as the hydrothermal/solvothermal method, biomimetic mineralization method, microwave-assisted method, (co-) precipitation method, and sonochemistry method, were employed to the preparation of CaCO3 and cellulose/CaCO3 nanocomposites. In this chapter, the recent development of CaCO3 and cellulose/CaCO3 nanocomposites has been reviewed. The synthesis, characterization, and biomedical applications of CaCO3 and cellulose/CaCO3 nanocomposites are summarized. The future developments of CaCO3 and cellulose/CaCO3 nanocomposites are also suggested.


Sign in / Sign up

Export Citation Format

Share Document