Preparation and characterization of collagen/chitosan/hyaluronic acid thin films for application in hair care cosmetics

2017 ◽  
Vol 89 (12) ◽  
pp. 1829-1839 ◽  
Author(s):  
Alina Sionkowska ◽  
Beata Kaczmarek ◽  
Marta Michalska ◽  
Katarzyna Lewandowska ◽  
Sylwia Grabska

AbstractIn this study thin films based on a blend of collagen, chitosan and hyaluronic acids were prepared and their surface and mechanical properties were studied. The structure of the films was studied using FTIR spectroscopy, contact angle measurement and AFM images. Swelling and mechanical analyses were also performed. The hair protection possibility of collagen/chitosan/hyaluronic was studied using SEM microscopy and the mechanical testing of hair coated by the blends. It was found that the addition of hyaluronic acid to a collagen/chitosan blend improves the mechanical resistance of biopolymeric films. Samples with the addition of hyaluronic acid were more stable in aqueous conditions and provided higher roughness of surface.

2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


2015 ◽  
Vol 642 ◽  
pp. 94-98
Author(s):  
Chau Chang Chou ◽  
Yu Hsiang Hao ◽  
Fu Yin Hsu

The surface of high-pressure crystallized ultra-high molecular weight polyethylene (UHMWPE) was modified for application as an artificial cartilage material. A UHMWPE surface pretreated by a series of processes, including treatment with O2-plasma and ethylenediamine solution, was coated with hyaluronic acid (HA). After that, adipic acid dihydrazide (AAD) was added to partially crosslink the HA coating in order to enhance its durability. The modified samples were verified by water contact angle measurement and Fourier transform infrared spectrometry. Both HA layers, original and crosslinked, were also quantitatively evaluated by carbohydrate chemistry assay according to the absorbance of the incident light. The tribological performance of the samples was evaluated by a pin-on-disk test rig lubricated by normal saline under an average pressure of 18 MPa and at a sliding speed of 0.03 m/s for 45 h. The wear resistance of the HA-coated UHMWPE specimens promoted by the crosslink process was superior to that of the original HA-coated sample, and that resistance was maintained after immersion in saline solution for one month.


2002 ◽  
Vol 80 (4) ◽  
pp. 691-693 ◽  
Author(s):  
Carmen M. Hernandez ◽  
Todd W. Murray ◽  
Sridhar Krishnaswamy

2014 ◽  
Vol 28 (20) ◽  
pp. 2046-2053 ◽  
Author(s):  
Hajar Maataoui ◽  
Hassan Barkai ◽  
Moulay Sadiki ◽  
Abdellatif Haggoud ◽  
Saad Ibnsouda Koraichi ◽  
...  

NANO ◽  
2011 ◽  
Vol 06 (03) ◽  
pp. 265-269 ◽  
Author(s):  
QUNBING ZHANG ◽  
SHIHE CAO ◽  
JUN WANG

ZnO films with well-aligned hierarchical structures have been successfully synthesized at moderate temperatures using a simple catalyst-free hydrothermal process. The synthesized ZnO films are found to be single-phase, with a hexagonal wurtzite-type structure. Scanning electron microscopy images show that the well-aligned hierarchical structures are assembled with interlaced parallel sheets grown on the (400) silica surface. The water contact angle measurement indicates that the water on the films has a contact angle of about 156.3°. This clearly demonstrates that the ZnO films synthesized by this simple method have superhydrophobic properties and may be important for applications in self-cleaning surfaces, biology, and so on.


2011 ◽  
Vol 197-198 ◽  
pp. 120-126 ◽  
Author(s):  
Jun Zou ◽  
Xu Bin Jiang ◽  
Jing Zhang ◽  
You Shu ◽  
Xuan Chen ◽  
...  

A new surface modification method by modifying low molecular weight ploy (L-lactide) (LMW PLLA) onto the β-tricalcium phosphate (β-TCP) superfine particles has been developed. The surface-modified β-TCP is characterized by FT-IR, XRD, digital microscope and contact angle measurement, et al. FT-IR spectra confirmed that LMW PLLA was connected onto the β-TCP surface through ionic interaction. XRD results indicated that the LMW PLLA did not affect the crystalline form of β-TCP, but the XRD patterns of the p-β-TCP showed a little difference with β-TCP. The p-β-TCP particles could be dispersed uniformly in dichloromethane. In contrast, unmodified β-TCP particles are apt to agglomerate after dispersed into dichloromethane. Wet angle measurement showed that hydrolyzed LMW PLLA significantly improves hydrophobicity of modified β-TCP particles. For the preparation of composites, PLLA was mixed with β-TCP and p-β-TCP, respectively, in a ratio of 85/15 (w/w) and moulded into tensile test specimens. Tensile tests showed that mechanical properties were improved, scanning electron microscopy (SEM) exhibited that modified β-TCP is an effective approach to prepare a homogeneous composites, moreover, it indicated a better interfacial phase interaction in the composite with the p-β-TCP. Chemical bonds between filler and PLLA matrix are assumed to be formed by ionic interaction.


2005 ◽  
Vol 277-279 ◽  
pp. 907-911
Author(s):  
Jingyu Hyeon Lee ◽  
Yi Yeol Lyu ◽  
Mong Sup Lee ◽  
Jin Heong Yim ◽  
Sang Youl Kim

Poly(methyl-co-cyclosiloxane bearing silsesquioxane)s (P(M-co-CSSQs)) were prepared. Using poly(e-caprolactone) (PCL) as a template, PCL / P(M-co-CSSQ) nanohybrid films were fabricated. The electrical, morphological, and mechanical properties of the PCL / P(M-co-CSSQ) films were investigated. The dielectric constant of a cured PCL / P(M-co-CSSQ) film at 420°C scaled down from 2.55 to 2.05 and refractive index from 1.41 to 1.33 when 20 vol. % of the PCL was admixed with the polymer matrix. The elastic modulus and hardness of the cured PCL / P(Mco- CSSQ) (2:8, vol./vol.) film were 2.50 and 0.32 GPa, respectively, showing dependency on the PCL content.


Sign in / Sign up

Export Citation Format

Share Document