scholarly journals Quality of Organic Vegetables Grown in Two Certified Sites on the Outskirts of Bucharest Municipality

2017 ◽  
Vol 11 (2) ◽  
pp. 173-185
Author(s):  
Mihaela Lungu ◽  
Sorin Liviu Ștefănescu ◽  
Monica Dumitrașcu

Abstract Soil fertility properties, irrigation water quality, mineral nutrition, and some vegetables mineral composition were studied in the frame of a project regarding yield quality monitoring in certified organic vegetable farms, in two farms placed on the outskirts of Bucharest Municipality which provide products for the town’s organic market. Chemical analysis of the soil samples collected from the two farms reflects a good fertility, close to the natural one of this region soils, with well-balanced organic matter, total nitrogen, accessible phosphorus and potassium contents. The nitrates contents concord with the plants nutrition demands and don’t present the risk to accumulate in vegetables or to leach into the groundwater. Slightly increased microelements, both total and soluble forms, occur. Soil microbiological properties are favorable for vegetable plants growth. A good biodiversity is noticed. There are differences between soil properties in open field and greenhouses, induced both by the type and degree of mechanical works and materials applied for fertilization and plant protection. Good conditions are generally created for plants mineral nutrition. Mineral nutrition status of the vegetables grown in organic conditions, assessed by the leaves mineral composition, doesn’t differ from the one of the vegetables grown in conventional conditions. The vegetables (fresh material) harvested from the two studied farms have good, even high, concentrations of mineral elements important for the yield nutritional quality. The excessive microelements quantities noticed in soil don’t transfer in the yield, so the latter quality and nutritional properties are not altered.

2021 ◽  
Vol 53 (4) ◽  
pp. 710-722
Author(s):  
N.V. Tetyannikov ◽  
N.V. Кozak ◽  
D.V. Panischeva ◽  
M.E. Mertvischeva ◽  
М.S. Gins ◽  
...  

Against the background of global climate change, drought stress has become one of the environmental limiting factors that can significantly influence the growth and development of crop plants. Drought stress conditions also cause changes in plant physiological and metabolic processes. The influence of soil drought on the mineral composition of the leaves of two Actinidia species with С3-type photosynthesis, namely, Actinidia argutа (Siebold & Zucc.) Planch. ex Miq. cultivar ‘Taezhny Dar’ and Actinidia kolomikta (Maxim. & Rupr.) Maxim. cultivar ‘Narodnaya’, was studied through energy dispersive spectrometry. The investigations were carried out during 2020 to 2021 at the Department of Genofonde and Bioresources of Plants, Federal Scientific Center for Horticulture, Moscow. The present research revealed that actinidia leaves contained the following major elements: K (11.19 mass% to 13.84 mass%), Ca (7.83% to 12.08 mass%), Cl (6.20 mass% to 7.33 mass%), and Mg (2.98 mass% to 3.44 mass%). Low values were recorded for Mo (1.19 mass% to 4.49 mass%) and P (0.83 mass% to 1.25 mass%). In both species, the mineral elements K and Ca were present at high levels. A positive correlation was observed between Mg–P, K–Mn, Mn–Se, Cu-Se, P–Si, Na–Mo, and Si–Mn in the leaves of A. argutа and between Cl–Ca, Mo; P–Si, Mo; and K–Ca in the leaves of A. kolomikta. Under stress conditions, the ratios of K/Ca and K/P declined to 0.9 and 6.3, respectively, whereas those of K/Cl, K/Mg, and K/Mo increased to 3.8, 4.4, and 2.7, respectively. The present studies confirmed that actinidia leaves contained high concentrations of minerals, especially K, Ca, P, and Mg, and that the accumulation of mineral elements in actinidia plant leaves under drought conditions varied depending on the species.


1969 ◽  
Vol 47 (5) ◽  
pp. 773-777
Author(s):  
L. L. Treanor ◽  
D. P. Whittier

The effect of mineral nutrition on apogamy was studied because earlier investigators proposed that low mineral levels induced apogamy. The weight of the gametophytic tissue and the number of apogamous plants per culture and per gram of gametophytic tissue were determined in relation to variations in the levels of mineral elements. The apogamous response was promoted only by high concentrations of phosphorus, and an increase in the gametophytic weight was produced by high levels of potassium. The omission of any of the elements from the nutrient medium inhibited apogamy and, except calcium, reduced the gametophytic weight.


2020 ◽  
Vol 15 (2) ◽  
pp. 95-101
Author(s):  
P. O. AKINTOKUN ◽  
A. K. AKINTOKUNN ◽  
M. R. OSHO ◽  
B. A. OYEBADE

Greenhouse trials were conducted to evaluate the effects of  siam weed (chromolaena odorata) and cowdung compost on  physicochemical properties, yield and mineral nutrition of tomatoes(lycopersicon esculentum l). The nutritional value of tomato makes it one of the crop that is a daily household consumption by every family.Compost was prepared in this study from Siam weed (Chromolaena odorata) and cowdung. Three compost samples were prepared from Cowdung and siam weed at ratio 100g: 100g (sample A),  200g chopped siam weed (sample B) and 200g cowdung (sample C). These three samples were composted in plastic drums perforated for aeration and each sample was replicated three times. The content in the drums were regularly turned and monitored at 1, 10, 30 and 60 days for physicochemical properties. The physicochemical and mineral element analyses of the compost were carried out using standard procedures.The pH of the composted samples ranged between 5.8 to 6.9. Nitrogen, phosphorus and potassium contents increased with days of composting while those of heavy metals decreased. The result of plant height for the two varieties ranges  between 5.31-119.8, number of  fruits is between 11-21 and the yield (kg) parameter ranges between 0.76-1.91. Treatment. A gave higher mineral element over other treatment applied. The order of mineral elements contributed to the fruits were as follows treatments A>C>B>D    


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Philip J. White ◽  
Martin R. Broadley ◽  
Peter J. Gregory

One definition of food security is having sufficient, safe, and nutritious food to meet dietary needs. This paper highlights the role of plant mineral nutrition in food production, delivering of essential mineral elements to the human diet, and preventing harmful mineral elements entering the food chain. To maximise crop production, the gap between actual and potential yield must be addressed. This gap is 15–95% of potential yield, depending on the crop and agricultural system. Current research in plant mineral nutrition aims to develop appropriate agronomy and improved genotypes, for both infertile and productive soils, that allow inorganic and organic fertilisers to be utilised more efficiently. Mineral malnutrition affects two-thirds of the world's population. It can be addressed by the application of fertilisers, soil amelioration, and the development of genotypes that accumulate greater concentrations of mineral elements lacking in human diets in their edible tissues. Excessive concentrations of harmful mineral elements also compromise crop production and human health. To reduce the entry of these elements into the food chain, strict quality requirements for fertilisers might be enforced, agronomic strategies employed to reduce their phytoavailability, and crop genotypes developed that do not accumulate high concentrations of these elements in edible tissues.


2021 ◽  
Vol 11 (14) ◽  
pp. 6336
Author(s):  
Werther Guidi Nissim ◽  
Elisa Masi ◽  
Camilla Pandolfi ◽  
Stefano Mancuso ◽  
Giulia Atzori

The use of seawater in horticulture is underestimated. Although pure seawater is harmful to most living plants, diluted seawater could represent a promising integration to meet the crop’s nutrient and water requirements. In the current trial, we compared the effects of moderate and high concentrations of seawater and a comparable NaCl solution on a salt-tolerant (Tetragonia tetragonioides) and a salt-sensitive (Lactuca sativa) crop grown in hydroponics. We tested the hypothesis that, due to its mineral composition, diluted seawater would result in a less stressful growing medium than NaCl. We observed that diluted seawater resulted in a less detrimental growing medium compared to an EC-comparable NaCl solution, with remarkable differences between the salt-tolerant and the salt-sensitive species. While the growth rates in Tetragonia did not vary between the two types of stress, diluted seawater led to a higher FW and DW biomass yield in the salt-sensitive lettuce compared to the NaCl treatment. Moreover, NaCl reduced the water consumption and water productivity in Tetragonia. In lettuce, NaCl-treated plants demonstrated lower water use efficiency and water productivity compared to the EC-comparable seawater treatment. Physiological parameters and the concentration of mineral elements, phenolics and proline also demonstrated that, due to different mineral composition, seawater is a less stressful growing medium compared to a NaCl solution at comparable EC.


Rangifer ◽  
1990 ◽  
Vol 10 (3) ◽  
pp. 203 ◽  
Author(s):  
Douglas C. Heard ◽  
T. Mark Williams

In winter, barren-ground caribou obtain minerals from ice and soil licks. Between December and April we have seen caribou cratering on the surface of frozen lakes and licking the ice. Ice samples from eight licks on four lakes contained concentrations of calcium, magnesium, sodium, potassium, phosphorus, chloride and sulphate many times higher than in the surrounding unlicked ice or than would be expected in lake water. Soil licks being used in March and June had high concentrations of calcium, magnesium, sodium phosphorus and potassium. In winter caribou may be seeking supplements of all of the major mineral elements (calcium, magnesium, sodium and potassium) at ice and soil licks because lichens, their staple winter diet, are low in minerals and may also reduce the absorption of some minerals.


2020 ◽  
Vol 4 (5) ◽  
pp. 449-452
Author(s):  
Alan MacLeod ◽  
Nicola Spence

COVID 19 has raised the profile of biosecurity. However, biosecurity is not only about protecting human life. This issue brings together mini-reviews examining recent developments and thinking around some of the tools, behaviours and concepts around biosecurity. They illustrate the multi-disciplinary nature of the subject, demonstrating the interface between research and policy. Biosecurity practices aim to prevent the spread of harmful organisms; recognising that 2020 is the International Year of Plant Health, several focus on plant biosecurity although invasive species and animal health concerns are also captured. The reviews show progress in developing early warning systems and that plant protection organisations are increasingly using tools that compare multiple pest threats to prioritise responses. The bespoke modelling of threats can inform risk management responses and synergies between meteorology and biosecurity provide opportunities for increased collaboration. There is scope to develop more generic models, increasing their accessibility to policy makers. Recent research can improve pest surveillance programs accounting for real-world constraints. Social science examining individual farmer behaviours has informed biosecurity policy; taking a broader socio-cultural approach to better understand farming networks has the potential to change behaviours in a new way. When encouraging public recreationists to adopt positive biosecurity behaviours communications must align with their values. Bringing together the human, animal, plant and environmental health sectors to address biosecurity risks in a common and systematic manner within the One Biosecurity concept can be achieved through multi-disciplinary working involving the life, physical and social sciences with the support of legislative bodies and the public.


2016 ◽  
Vol 29 (3) ◽  
pp. 656-664 ◽  
Author(s):  
HAMMADY RAMALHO E SOARES ◽  
ÊNIO FARIAS DE FRANÇA E SILVA ◽  
GERÔNIMO FERREIRA DA SILVA ◽  
RAQUELE MENDES DE LIRA ◽  
RAPHAELA REVORÊDO BEZERRA

ABSTRACT Water availability in the Brazilian semiarid is restricted and often the only water source available has high salt concentrations. Hydroponics allows using these waters for production of various crops, including vegetables, however, the water salinity can cause nutritional disorders. Thus, two experiments were conducted in a greenhouse at the Department of Agricultural Engineering of the Federal Rural University of Pernambuco, to evaluate the effects of salinity on the mineral nutrition of crisphead lettuce, cultivar Taina, in a hydroponic system (Nutrient Film Technique), using brackish water in the nutrient solution, which was prepared by adding NaCl to the local water (0.2 dS m-1). A randomized blocks experimental design was used in both experiments. The treatments consisted of water of different salinity levels (0.2, 1.2, 2.2, 3.2, 4.2 and 5.2 dS m-1) with four replications, totaling 24 plots for each experiment. The water added to compensate for the water - depth loss due to evapotranspiration (WCET) was the brackish water of each treatment in Experiment I and the local water without modifications in Experiment II. The increase in the salinity of the water used for the nutrient solution preparation reduced the foliar phosphorus and potassium contents and increased the chloride and sodium contents, regardless of the WCET. Foliar nitrogen, calcium, magnesium and sulfur contents were not affected by increasing the water salinity used for the nutrient solution preparation.


2015 ◽  
Vol 77 (3) ◽  
Author(s):  
Anuar Othman ◽  
Nasharuddin Isa ◽  
Rohaya Othman

Precipitated calcium carbonate (PCC) chemically can be synthesized in the laboratory. In this study, hydrated lime or calcium hydroxide was used as raw material with sucrose as additive to produce PCC. The process was compared with the one without additive. PCC produced was observed based on morphology, mineral composition and size by using Fesem-Edx and LPSA, respectively. PCC products without additive demonstrated fine and more uniform size of calcite PCC as compared to the one with additive. Nevertheless, the process with additive produced more PCC product than without additive.


2017 ◽  
Vol 04 (01) ◽  
Author(s):  
Mehnaz Akram ◽  
Sayed Hussain ◽  
Abdul Hamid ◽  
Sajid Majeed ◽  
Saeed Ahmed Chaudary ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document