scholarly journals Optimization of wearable microwave antenna with simplified electromagnetic model of the human body

Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 1055-1060 ◽  
Author(s):  
Łukasz Januszkiewicz ◽  
Paolo Di Barba ◽  
Sławomir Hausman

AbstractIn this paper the problem of optimization design of a microwave wearable antenna is investigated. Reference is made to a specific antenna design that is a wideband Vee antenna the geometry of which is characterized by 6 parameters. These parameters were automatically adjusted with an evolution strategy based algorithm EStra to obtain the impedance matching of the antenna located in the proximity of the human body. The antenna was designed to operate in the ISM (industrial, scientific, medical) band which covers the frequency range of 2.4 GHz up to 2.5 GHz. The optimization procedure used the finite-difference time-domain method based full-wave simulator with a simplified human body model. In the optimization procedure small movements of antenna towards or away of the human body that are likely to happen during real use were considered. The stability of the antenna parameters irrespective of the movements of the user’s body is an important factor in wearable antenna design. The optimization procedure allowed obtaining good impedance matching for a given range of antenna distances with respect to the human body.

Author(s):  
Mahesh Kumar Aghwariya ◽  
Amit Kumar ◽  
Ragini Sharma

This chapter presents the various designing methods and challenges associated with wearable antennas, selecting the designing material, various fabrication techniques, and implementation methods on the fabric. Wearable antennas have gained popularity in recent years due to their unmatched properties and unique features. The wearable antenna is capable of providing effective wireless communication, tracking, and sensing. These types of antenna need to be conformal when used on numerous parts of the human body, and they need to be lightweight, flexible, and must be implemented easily on the flexible material. These antennas must be capable of operating with maximum efficiency on the human body. These requirements make the wearable antenna design challenging. They also need to be compact in size, better in coupling with the body, and must be capable of handling issues associated with the device when the target is moving.


2014 ◽  
Vol 651-653 ◽  
pp. 2050-2054 ◽  
Author(s):  
Fu Xing LI

Through the ergonomic analysis module that is based on the CATIA software platform, the virtual human body model is introduced into the rescue cabin digital module of ambulance and thus the virtual man-machine relationship is established; meanwhile, the theories of ergonomics are employed as guidance for the optimization design of rescue cabin so as to probe into how the CATIA-based ergonomic analysis module is applied in product development and design.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Karoliina Koski ◽  
Toni Björninen ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen ◽  
Yahya Rahmat-Samii

Body-centric wireless systems demand wearable sensor and tag antennas that have robust impedance matching and provide enough gain for a reliable wireless communication link. In this paper, we discuss a novel and practical technique for the modeling of the human body in UHF RFID body-centric wireless systems. What makes this technique different is that we base the human model on measured far-field response from a reference tag attached to the human body. Hereby, the human body model accounts for the encountered human body effects on the tag performance. The on-body measurements are fast, which allows establishing a catalog of human body models for different tag locations and human subjects. Such catalog would provide a ready simulation model for a wide range of wireless body-centric applications in order to initiate a functional design. Our results demonstrate that the suggested modeling technique can be used in the design and optimization of wearable antennas for different real-case body-centric scenarios.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


2019 ◽  
Author(s):  
Reeves Cramer ◽  
Suwasti Broto ◽  
Nifty Fath ◽  
Indra Riyanto ◽  
Josaphat Tetuko Sri Sumantyo

Sign in / Sign up

Export Citation Format

Share Document