scholarly journals Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

2015 ◽  
Vol 17 (4) ◽  
pp. 109-114 ◽  
Author(s):  
Sabina Elżbieta Drewniak ◽  
Tadeusz Piotr Pustelny ◽  
Roksana Muzyka ◽  
Agnieszka Plis

Abstract The aim of the experimental research studies was to determine some electrical properties of graphite oxide and thermally exfoliated/reduced graphene oxide. The authors tried to interpret the obtained physicochemical results. For that purpose, both resistance measurements and investigation studies were carried out in order to characterize the samples. The resistance was measured at various temperatures in the course of composition changes of gas atmospheres (which surround the samples). The studies were also supported by such methods as: scanning electron microscopy (SEM), Raman spectroscopy (RS), atomic force microscopy (AFM) and thermogravimetry (TG). Moreover, during the experiments also the elemental analyses (EA) of the tested samples (graphite oxide and thermally exfoliated/reduced graphene oxide) were performed.

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 666
Author(s):  
Xinchuan Fan ◽  
Yue Hu ◽  
Yijun Zhang ◽  
Jiachen Lu ◽  
Xiaofeng Chen ◽  
...  

Reduced graphene oxide–epoxy grafted poly(styrene-co-acrylate) composites (GESA) were prepared by anchoring different amount of epoxy modified poly(styrene-co-acrylate) (EPSA) onto reduced graphene oxide (rGO) sheets through π–π electrostatic attraction. The GESA composites were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The anti-corrosion properties of rGO/EPSA composites were evaluated by electro-chemical impedance spectroscopy (EIS) in hydroxyl-polyacrylate coating, and the results revealed that the corrosion rate was decreased from 3.509 × 10−1 to 1.394 × 10−6 mm/a.


2021 ◽  
pp. 295-308 ◽  
Author(s):  
Jagdish C. Bhangoji ◽  
Srikant Sahoo ◽  
Ashis Kumar Satpati ◽  
Suresh S. Shendage

A simple and environment friendly protocol has been developed for the synthesis of Ag nanoparticles (AgNPs) supported on reduced graphene oxide (rGO) with copper metal foil as reductant. The prepared AgNPs-rGO, nanocomposite was characterized by various analytical techniques such as scanning electron microscopy (SEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD). The electrochemical performance of the material has been evaluated using cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The average crystallite size of AgNPs is found to be 32.34 nm. The application of prepared electrocatalyst (AgNPs-rGO) as a non-enzymatic sensor is examined through the modified electrode with the synthesized AgNPs-rGO. The sensor showed excellent performance toward H2O2 reduction with a sensitivity of 12.73 µA.cm-2.mM-1, with a linear dynamic range of 1.5 µM – 100 mM, and the detection limit of 1.90 µM (S/N = 3). Furthermore, the sensor displayed high sensitivity, reproducibility, stability and selectivity for the determination of H2O2. The results demonstrated that AgNPs-rGO has potential applications as sensing material for quantitative determination of H2O2.


2019 ◽  
Vol 11 (1) ◽  
pp. 168781401882288 ◽  
Author(s):  
Yafei Sun ◽  
Min Chen ◽  
Peiwei Gao ◽  
Tianshu Zhou ◽  
Hongwei Liu ◽  
...  

In this article, reduced graphene oxide/Ni/multi-walled carbon nanotubes/Fe3O4 filled paste is synthesized with the aim of developing a novel shielding material. To do so, nano-dispersion presenting homogeneous distribution is made by ultrasonic dispersing technology. Next, the effects of nano-absorbent content on the fluidity, mechanical strength, pore structure, resistivity, and absorbing reflectivity of paste are studied. At the end, the microstructure of composite is uncovered by scanning electron microscopy, Fourier transformer infrared, X-ray diffraction images as well as the pore size distribution and absorbing reflectivity are revealed. The results indicate that a small load of reduced graphene oxide and other nano-absorbents can significantly reduce the fluidity and resistivity of paste, but its pore structure is improved so that its mechanical properties are increased. Scanning electron microscopy images indicate that reduced graphene oxide promotes the increasing and thickening of the cement hydration products as well as the growth of a large number of flower-like and compact bulk crystals. Furthermore, the minimum reflectivity of −10.6 dB is obtained in the range of 2–18 GHz while the effective bandwidth of 16 GHz is obtained when reflectivity is less than −5 dB. This research provides a new pathway for the preparation of monolayer cement–based absorber.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Alem Teklu ◽  
Canyon Barry ◽  
Matthew Palumbo ◽  
Collin Weiwadel ◽  
Narayanan Kuthirummal ◽  
...  

Nanoindentation coupled with Atomic Force Microscopy was used to study stiffness, hardness, and the reduced Young’s modulus of reduced graphene oxide. Oxygen reduction on the graphene oxide sample was performed via LightScribe DVD burner reduction, a cost-effective approach with potential for large scale graphene production. The reduction of oxygen in the graphene oxide sample was estimated to about 10 percent using FTIR spectroscopic analysis. Images of the various samples were captured after each reduction cycle using Atomic Force Microscopy. Elastic and spectroscopic analyses were performed on the samples after each oxygen reduction cycle in the LightScribe, thus allowing for a comparison of stiffness, hardness, and the reduced Young’s modulus based on the number of reduction cycles. The highest values obtained were after the fifth and final reduction cycle, yielding a stiffness of 22.4 N/m, a hardness of 0.55 GPa, and a reduced Young’s modulus of 1.62 GPa as compared to a stiffness of 22.8 N/m, a hardness of 0.58 GPa, and a reduced Young’s modulus of 1.84 GPa for a commercially purchased graphene film made by CVD. This data was then compared to the expected values of pristine single layer graphene. Furthermore, two RC circuits were built, one using a parallel plate capacitors made of light scribed graphene on a kapton substrate (LSGC) and a second one using a CVD deposited graphene on aluminum (CVDGC). Their RC time constants and surface charge densities were compared.


2016 ◽  
Vol 16 (5) ◽  
pp. 1378-1387 ◽  
Author(s):  
Reyhaneh Kaveh ◽  
Zahra Shariatinia ◽  
Ahmad Arefazar

The effect of decane-functionalized reduced graphene oxide (decane-rGO) was studied on the performance of polyacrylonitrile (PAN) ultrafiltration membranes. The results showed that the decane-rGO/PAN membranes had greater salt rejections relative to their corresponding GO/PAN membranes, confirming superior performance of modified decane-rGO particles. Also, the membrane with 0.2 wt% decane-rGO exhibited maximum water flux and appropriate salt rejection. The field-emission scanning electron microscopy (FE-SEM) micrographs illustrated that the sponge-like pores in the pristine PAN membrane were changed to a finger-like structure in the membrane containing up to 0.2 wt% of decane-rGO and the vertical holes were converted to horizontal holes by further increasing the decane-rGO concentration in the polymer matrix.


2012 ◽  
Vol 36 ◽  
pp. 571-577 ◽  
Author(s):  
Jen-You Chu ◽  
Wei-Sheng Hsu ◽  
Wei-Ren Liu ◽  
Hung-Min Lin ◽  
Hsin-Ming Cheng ◽  
...  

2019 ◽  
Vol 21 (19) ◽  
pp. 10125-10134 ◽  
Author(s):  
Bing Ma ◽  
Raul D. Rodriguez ◽  
Alexey Ruban ◽  
Sergey Pavlov ◽  
Evgeniya Sheremet

Second-order Raman modes correlate with the electrical properties of reduced graphene oxide measured at the nanoscale by atomic force microscopy.


2011 ◽  
Vol 110 (11) ◽  
pp. 114515 ◽  
Author(s):  
Yu Zhang ◽  
Lianqing Liu ◽  
Ning Xi ◽  
Yuechao Wang ◽  
Zaili Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document