scholarly journals Postharvest Treatments with Methyl Jasmonate and Salicylic Acid for Maintaining Physico-Chemical Characteristics and Sensory Quality Properties of Apricot Fruit during Cold Storage and Shelf-Life

2017 ◽  
Vol 67 (2) ◽  
pp. 159-166 ◽  
Author(s):  
Ahmed Ezzat ◽  
Amin Ammar ◽  
Zoltán Szabó ◽  
József Nyéki ◽  
Imre Holb
2012 ◽  
Vol 79 (4) ◽  
pp. 390-396 ◽  
Author(s):  
Michele Faccia ◽  
Marianna Mastromatteo ◽  
Amalia Conte ◽  
Matteo Alessandro Del Nobile

In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed thatPseudomonasspp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of ‘salting in’.


2020 ◽  
Vol 10 (22) ◽  
pp. 8071
Author(s):  
Ahmed Ezzat ◽  
Attila Hegedűs ◽  
Szilárd Szabó ◽  
Amin Ammar ◽  
Zoltán Szabó ◽  
...  

The apricot storability is one of the largest challenges, which the apricot industry has to face all over the world; therefore, finding options for prolonging fruit quality during cold storage (CS) and shelf-life (SL) will help to decrease postharvest losses of apricot. The aim of this apricot fruit work was to study the temporal changes and correlations of 10 quality parameters (quality losses, antioxidant properties and enzyme activities) in the postharvest treatments of methyl jasmonate (MeJA) and salicylic acid (SA) under 1 °C CS (7, 14 and 21 days) and 25 °C SL (4 and 8 days after the 21-day CS) treatments. MeJA and SA significantly decreased the quality loss of chilling injury (CI) and fruit decay (FD) at all dates for both storage conditions. MeJA- and SA-treated fruits increased total antioxidant capacity (TAC), total soluble phenolic compounds (TSPC) and carotenoids contents (TCC) at all dates of both storage treatments. In contrast, the ascorbic acid content (AAC) increased only until days 14 and 4 in the CS and SL treatments, respectively. Among enzyme activity parameters, the activities of phenylalanine ammonia-lyase (PAL), peroxidase and superoxide dismutase (SOD) were significantly increased in the MeJA and SA treatments in all dates of both storage treatments. Catalase (CAT) activity increased in the SA and control treatments, while it decreased in the MeJA treatment in both storage conditions. In both the MeJA and the SA treatments, six pair-variables (FD vs. CI, PAL vs. CAT, PAL vs. SOD, TAC vs. SOD, TAC vs. FD, and AAC vs. CI) were significant in Pearson correlation and regression analyses among the 45 parameters pairs. Principal component analyses explained 89.3% of the total variance and PC1 accounted for 55.6% of the variance and correlated with the CI, FD, TAC, TSPC, TCC, PAL and SOD, indicating strong connections among most parameters. In conclusion, MeJA and SA are practically useful and inexpensive techniques to maintain quality attributes of CI, FD, TAC, TSPC, TCC, PAL, POD and SOD in apricot fruit during both CS and SL conditions.


Author(s):  
Jakellinye Miranda ◽  
Suélen Braga de Andrade, Andressa Vighi Schiavon ◽  
Pedro Luis Panisson Kaltbach Lemos ◽  
Cláudia Simone Madruga Lima ◽  
Marcelo Barbosa Malgarim

Peach is a climacteric highly-perishable fruit whose post-harvest preservation relies largely on cold storage. The combination of the last with other technologies allows to extend the shelf life of this product. One alternative is the utilization of salicylic acid, a natural compound involved in many physiological phenomena such as resistance against diseases and ripening. Considering these facts, the objective of the present work was to evaluate the effect of pre-harvest application of salicylic acid solutions on the quality of ‘Chimarrita’ peaches during post-harvest cold storage. The experiment was conducted at the Federal University of Pelotas/RS, in the campus of Capão do Leão/RS - Brazil. The application of salicylic acid solutions was performed by direct pulverization on the fruits, 30 days prior to harvest. The concentrations were: 0,0 (control); 1,0; 1,5; and 2,0 mM. After harvest, the fruits were stored in a cold chamber at 1,0 ± 0,5°C and 85-90% RH, for 30 days. The analyses were performed at the following cold storage periods (plus 2 days at room temperature of 20°C to all treatments, in order to simulate commercialization conditions): 10 (+2) days; 20 (+2) days; e 30 (+2) days. The variables evaluated were: mass loss (%); flesh firmness (N); DA index; color (L, a*, b* and hue angle); wooliness incidence (%); rot incidence (%); total soluble solids (°Brix); pH; titrable acidity (% of organic acids); and ratio. The salicylic acid doses and/or the cold storage periods had significant effects on all the evaluated parameters. For most of the parameters analyzed, the intermediate dosis of 1mM (and also 1,5mM) of salicilic acid showed the most promising results. Therefore, the application of salicylic acid solutions 30 days prior to harvest is a technique which can be combined to cold storage in order to shift the quality and the shelf-life of ‘Chimarrita’ peaches.


2006 ◽  
Vol 54 (11) ◽  
pp. 3887-3895 ◽  
Author(s):  
Da-Peng Li ◽  
Yun-Feng Xu ◽  
Li-Ping Sun ◽  
Li-Xia Liu ◽  
Xiao-Li Hu ◽  
...  

Author(s):  
Dorota Zielińska ◽  
Beata Bilska ◽  
Katarzyna Marciniak-Łukasiak ◽  
Anna Łepecka ◽  
Monika Trząskowska ◽  
...  

Food labelled with a “best before” date has a long shelf life. This study aimed to examine the respondents’ knowledge and understanding regarding the labelling on food products, as well as to assess the microbiological, physico–chemical and the sensory quality of selected durable food products on and after the date specified by the manufacturer. Two methods were used—a survey and laboratory tests. It was found that the majority of respondents have difficulty distinguishing and understanding the terms on the label and that a significant proportion of the respondents consume food products after the “best before” date. Laboratory tests of milk, pasta, mayonnaise and jam confirmed the microbiological safety of the products even six months after the “best before” date. Other features (texture, colour and sensory quality) slightly changed after one month for milk and mayonnaise (the colour had become more yellow) and after three months for pasta (its hardness had decreased) and jam (it had become browner). The possibility of extending the “best before” dates of selected durable foods could be considered, which could allow such products to legally be handed over to public benefit organisations, thereby reducing food wastage.


Sign in / Sign up

Export Citation Format

Share Document