scholarly journals Characterizing Surface and Air Temperature in the Baltic Sea Coastal Area Using Remote Sensing Techniques and Gis

2016 ◽  
Vol 23 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Andrzej Chybicki ◽  
Marcin Kulawiak ◽  
Zbigniew Łubniewski

Abstract Estimation of surface temperature using multispectral imagery retrieved from satellite sensors constitutes several problems in terms of accuracy, accessibility, quality and evaluation. In order to obtain accurate results, currently utilized methods rely on removing atmospheric fluctuations in separate spectral windows, applying atmospheric corrections or utilizing additional information related to atmosphere or surface characteristics like atmospheric water vapour content, surface effective emissivity correction or transmittance correction. Obtaining accurate results of estimation is particularly critical for regions with fairly non-uniform distribution of surface effective emissivity and surface characteristics such as coastal zone areas. The paper presents the relationship between retrieved land surface temperature, air temperature, sea surface temperature and vegetation indices (VI) calculated based on remote observations in the coastal zone area. An indirect comparison method between remotely estimated surface temperature and air temperature using LST/VI feature space characteristics in an operational Geographic Information System is also presented.

Author(s):  
Georgiana Grigoraș ◽  
Bogdan Urițescu

Abstract The aim of the study is to find the relationship between the land surface temperature and air temperature and to determine the hot spots in the urban area of Bucharest, the capital of Romania. The analysis was based on images from both moderate-resolution imaging spectroradiometer (MODIS), located on both Terra and Aqua platforms, as well as on data recorded by the four automatic weather stations existing in the endowment of The National Air Quality Monitoring Network, from the summer of 2017. Correlation coefficients between land surface temperature and air temperature were higher at night (0.8-0.87) and slightly lower during the day (0.71-0.77). After the validation of satellite data with in-situ temperature measurements, the hot spots in the metropolitan area of Bucharest were identified using Getis-Ord spatial statistics analysis. It has been achieved that the “very hot” areas are grouped in the center of the city and along the main traffic streets and dense residential areas. During the day the "very hot spots” represent 33.2% of the city's surface, and during the night 31.6%. The area where the mentioned spots persist, falls into the "very hot spot" category both day and night, it represents 27.1% of the city’s surface and it is mainly represented by the city center.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Yixu Wang ◽  
Mingxue Xu ◽  
Jun Li ◽  
Nan Jiang ◽  
Dongchuan Wang ◽  
...  

Although research relating to the urban heat island (UHI) phenomenon has been significantly increasing in recent years, there is still a lack of a continuous and clear recognition of the potential gradient effect on the UHI—landscape relationship within large urbanized regions. In this study, we chose the Beijing-Tianjin-Hebei (BTH) region, which is a large scaled urban agglomeration in China, as the case study area. We examined the causal relationship between the LST variation and underlying surface characteristics using multi-temporal land cover and summer average land surface temperature (LST) data as the analyzed variables. This study then further discussed the modeling performance when quantifying their relationship from a spatial gradient perspective (the grid size ranged from 6 to 24 km), by comparing the ordinary least squares (OLS) and geographically weighted regression (GWR) methods. The results indicate that: (1) both the OLS and GWR analysis confirmed that the composition of built-up land contributes as an essential factor that is responsible for the UHI phenomenon in a large urban agglomeration region; (2) for the OLS, the modeled relationship between the LST and its drive factor showed a significant spatial gradient effect, changing with different spatial analysis grids; and, (3) in contrast, using the GWR model revealed a considerably robust and better performance for accommodating the spatial non-stationarity with a lower scale dependence than that of the OLS model. This study highlights the significant spatial heterogeneity that is related to the UHI effect in large-extent urban agglomeration areas, and it suggests that the potential gradient effect and uncertainty induced by different spatial scale and methodology usage should be considered when modeling the UHI effect with urbanization. This would supplement current UHI study and be beneficial for deepening the cognition and enlightenment of landscape planning for UHI regulation.


2021 ◽  
Vol 13 (6) ◽  
pp. 1177
Author(s):  
Peijuan Wang ◽  
Yuping Ma ◽  
Junxian Tang ◽  
Dingrong Wu ◽  
Hui Chen ◽  
...  

Tea (Camellia sinensis) is one of the most dominant economic plants in China and plays an important role in agricultural economic benefits. Spring tea is the most popular drink due to Chinese drinking habits. Although the global temperature is generally warming, spring frost damage (SFD) to tea plants still occurs from time to time, and severely restricts the production and quality of spring tea. Therefore, monitoring and evaluating the impact of SFD to tea plants in a timely and precise manner is a significant and urgent task for scientists and tea producers in China. The region designated as the Middle and Lower Reaches of the Yangtze River (MLRYR) in China is a major tea plantation area producing small tea leaves and low shrubs. This region was selected to study SFD to tea plants using meteorological observations and remotely sensed products. Comparative analysis between minimum air temperature (Tmin) and two MODIS nighttime land surface temperature (LST) products at six pixel-window scales was used to determine the best suitable product and spatial scale. Results showed that the LST nighttime product derived from MYD11A1 data at the 3 × 3 pixel window resolution was the best proxy for daily minimum air temperature. A Tmin estimation model was established using this dataset and digital elevation model (DEM) data, employing the standard lapse rate of air temperature with elevation. Model validation with 145,210 ground-based Tmin observations showed that the accuracy of estimated Tmin was acceptable with a relatively high coefficient of determination (R2 = 0.841), low root mean square error (RMSE = 2.15 °C) and mean absolute error (MAE = 1.66 °C), and reasonable normalized RMSE (NRMSE = 25.4%) and Nash–Sutcliffe model efficiency (EF = 0.12), with significantly improved consistency of LST and Tmin estimation. Based on the Tmin estimation model, three major cooling episodes recorded in the "Yearbook of Meteorological Disasters in China" in spring 2006 were accurately identified, and several highlighted regions in the first two cooling episodes were also precisely captured. This study confirmed that estimating Tmin based on MYD11A1 nighttime products and DEM is a useful method for monitoring and evaluating SFD to tea plants in the MLRYR. Furthermore, this method precisely identified the spatial characteristics and distribution of SFD and will therefore be helpful for taking effective preventative measures to mitigate the economic losses resulting from frost damage.


2021 ◽  
Vol 56 (1-2) ◽  
pp. 635-650 ◽  
Author(s):  
Qingxiang Li ◽  
Wenbin Sun ◽  
Xiang Yun ◽  
Boyin Huang ◽  
Wenjie Dong ◽  
...  

2013 ◽  
Vol 10 (11) ◽  
pp. 7575-7597 ◽  
Author(s):  
K. A. Luus ◽  
Y. Gel ◽  
J. C. Lin ◽  
R. E. J. Kelly ◽  
C. R. Duguay

Abstract. Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended to accumulate greater quantities of snow, likely because drier soils freeze faster and more thoroughly than wetter soils. Understanding and continuing to monitor these linkages at the regional scale using the ACE approach can allow insights to be gained into the complex response of Arctic ecosystems to climate-driven shifts in air temperature, vegetation, soil moisture and snow accumulation.


2015 ◽  
Vol 12 (8) ◽  
pp. 7665-7687 ◽  
Author(s):  
C. L. Pérez Díaz ◽  
T. Lakhankar ◽  
P. Romanov ◽  
J. Muñoz ◽  
R. Khanbilvardi ◽  
...  

Abstract. Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.


Author(s):  
M. K. Firozjaei ◽  
M. Makki ◽  
J. Lentschke ◽  
M. Kiavarz ◽  
S. K. Alavipanah

Abstract. Spatiotemporal mapping and modeling of Land Surface Temperature (LST) variations and characterization of parameters affecting these variations are of great importance in various environmental studies. The aim of this study is a spatiotemporal modeling the impact of surface characteristics variations on LST variations for the studied area in Samalghan Valley. For this purpose, a set of satellite imagery and meteorological data measured at the synoptic station during 1988–2018, were used. First, single-channel algorithm, Tasseled Cap Transformation (TCT) and Biophysical Composition Index (BCI) were employed to estimate LST and surface biophysical parameters including brightness, greenness and wetness and BCI. Also, spatial modeling was used to modeling of terrain parameters including slope, aspect and local incident angle based on DEM. Finally, the principal component analysis (PCA) and the Partial Least Squares Regression (PLSR) were used to modeling and investigate the impact of surface characteristics variations on LST variations. The results indicated that surface characteristics vary significantly for case study in spatial and temporal dimensions. The correlation coefficient between the PC1 of LST and PC1s of brightness, greenness, wetness, BCI, DEM, and solar local incident angle were 0.65, −0.67, −0.56, 0.72, −0.43 and 0.53, respectively. Furthermore, the coefficient coefficient and RMSE between the observed LST variation and modelled LST variation based on PC1s of brightness, greenness, wetness, BCI, DEM, and local incident angle were 0.83 and 0.14, respectively. The results of study indicated the LST variation is a function of s terrain and surface biophysical parameters variations.


Sign in / Sign up

Export Citation Format

Share Document