scholarly journals Relationship of cyanobacterial and algal assemblages with vegetation in the high Arctic tundra (West Spitsbergen, Svalbard Archipelago)

2015 ◽  
Vol 36 (3) ◽  
pp. 239-260 ◽  
Author(s):  
Dorota Richter ◽  
Mirosława Pietryka ◽  
Jan Matuła

AbstractThe paper presents the results of a study of cyanobacteria and green algae assemblages occurring in various tundra types determined on the basis of mosses and vascular plants and habitat conditions. The research was carried out during summer in the years 2009-2013 on the north sea-coast of Hornsund fjord (West Spitsbergen, Svalbard Archipelago). 58 sites were studied in various tundra types differing in composition of vascular plants, mosses and in trophy and humidity. 141 cyanobacteria and green algae were noted in the research area in total. Cyanobacteria and green algae flora is a significant element of many tundra types and sometimes even dominate there. Despite its importance, it has not been hitherto taken into account in the description and classification of tundra. The aim of the present study was to demonstrate the legitimacy of using phycoflora in supplementing the descriptions of hitherto described tundra and distinguishing new tundra types. Numeric hierarchical-accumulative classification (MVSP 3.1 software) methods were used to analyze the cyanobacterial and algal assemblages and their co-relations with particular tundra types. The analysis determined dominant and distinctive species in the communities in concordance with ecologically diverse types of tundra. The results show the importance of these organisms in the composition of the vegetation of tundra types and their role in the ecosystems of this part of the Arctic.

1966 ◽  
Vol 98 (11) ◽  
pp. 1135-1144 ◽  
Author(s):  
J. A. Downes

AbstractFrom the revised list of the Lepidoptera of Greenland and from recent work in Ellesmere Island it is shown that almost all the species found in high arctic Canada occur also in Greenland, predominantly in the north, and that this high arctic element constitutes a large fraction of the fauna of Greenland as a whole. It is suggested that this part of the fauna originated entirely from the nearctic by the little-interrupted land route across the arctic islands. The poverty of southerly Lepidoptera in Greenland stands in sharp contrast. It is illustrated by a comparison with the vascular plants and by other comparisons with the Lepidoptera found in the corresponding life zones in North America, and this section of the paper includes the first published list of the Lepidoptera of Baffin Island. It is suggested that this southerly fauna is of adventitious origin, by casual dispersal from overseas (Labrador, Iceland) or perhaps in a few cases by introduction by man. Thus Greenland, in respect of its fauna of southerly type, is an oceanic island of post-glacial age. Similar evidence suggests that Iceland also has been populated mainly in the same way. The conclusions derived from the Lepidoptera apply to several other groups of insects and also to the mammals, including man.


1997 ◽  
Vol 17 (1) ◽  
pp. 388-417

The Paleogene chapter of Svalbard history is a quite distinct one. It begins with an unconformity, albeit a sub-parallel one representing a late Cretaceous hiatus. Resting on Albian and older strata, the Van Mijenfjorden Group of six formations totals a thickness of about 2500 m in the Central Basin of Spitsbergen. The outcrop is ringed by Early Cretaceous strata in a broad syncline (Fig. 20.1). The strata are largely non-marine, coal-bearing sandstones, with interbedded marine shales and they range in age through Paleocene and Eocene.From latest Paleocene through Eocene time the West Spitsbergen Orogeny caused (Spitsbergian) deformation along the western border of the Central Basin, but it is most conspicuous in the folding and thrusting of Carboniferous through Early Cretaceous rocks. The orogen extended westwards to and beyond the western coast of central and southern Spitsbergen including Precambrian and Early Paleozoic rocks, which had already been involved in earlier tectogenesis. The eastward-verging thrusting extended beneath the Tertiary basin and reactivated older faults to the east.In the wider context Svalbard, adjacent to the north coast of Greenland, had been an integral part of Pangea from Carboniferous through Cretaceous time. The northward extension of the Atlantic opening reached and initiated the spreading of the Arctic Eurasia Basin at the beginning of the Paleogene Period. This led to the separation of Svalbard together with the Barents Shelf and northern Europe from Greenland by dextral strike-slip transform faulting. In the course of this progression, oblique collision between northeast Greenland and Svalbard caused


2019 ◽  
Vol 166 (12) ◽  
Author(s):  
Michał Grabowski ◽  
Aleksandra Jabłońska ◽  
Agata Weydmann-Zwolicka ◽  
Mikhail Gantsevich ◽  
Petr Strelkov ◽  
...  

Abstract The distribution of two common intertidal amphipod species Gammarus oceanicus and Gammarus setosus was studied along the coast of Svalbard Archipelago. Genetic analysis showed geographical homogeneity of G. oceanicus with only one molecular operational taxonomic unit (MOTU) and much higher diversification of G. setosus (5 MOTUs) in the studied area. Only two MOTUs of G. setosus are widespread along the whole studied Svalbard coastline, whereas the remaining three MOTUs are present mainly along the northern and eastern parts of archipelago’s largest island, Spitsbergen. Distribution analysis indicates that the demographic and spatial expansion of G. oceanicus in the northern Atlantic has started already during the Last Glacial Maximum (LGM, ca. 18 ka), while G. setosus seems to be a long-persistent inhabitant of the Arctic, possibly even through the LGM, with slower distribution dynamics. Combining the results of our molecular study with previous field observations and the knowledge upon the direction of ocean currents around the Svalbard Archipelago, it can be assumed that G. oceanicus is a typical boreal Atlantic species that is still continuing its postglacial expansion northwards. In recent decades it colonized High Arctic due to the climate warming and has partly displaced G. setosus, that used to be the only common gammarid of the Svalbard intertidal zone.


1989 ◽  
Vol 12 ◽  
pp. 152-156 ◽  
Author(s):  
W.M. Sackinger ◽  
M.O. Jeffries ◽  
H. Tippens ◽  
F. Li ◽  
M. Lu

The largest ice island presently known to exist in the Arctic Ocean has a mass of about 700 × 106 tonnes, an area of about 26 km2, and a mean thickness of 42.5 m. Known as Hobson’s Ice Island, this large ice feature has been tracked almost continuously since August 1983 with a succession of Argos buoys. In this paper, two particular ice-island movement episodes near the north-west coast of Axel Heiberg Island are described: 6–16 May 1986 and 14–21 June 1986. Each movement episode is analyzed in terms of the forces acting on the ice island, including wind shear, water drag, water shear, Coriolis force, sea-surface tilt, and pack-ice force. Ice-island movement is generally preceded by an offshore surface wind, and a threshold wind speed of 6 m s°1 appears to be necessary to initiate ice-island motion. An angle of 50° between surface wind and ice-island movement direction is noted during one episode. The pack-ice force, which appears to be the dominant arresting factor of ice-island motion for these two episodes, varies from 100° to 180° to the left of the ice-island velocity direction, depending upon whether the ice island is accelerating or decelerating.


2019 ◽  
Author(s):  
Tomasz Wawrzyniak ◽  
Marzena Osuch

Abstract. The article presents the climatological dataset from the Polish Polar Station Hornsund located in the SW part of Spitsbergen - the biggest island of the Svalbard Archipelago. Due to a general lack of long-term in situ measurements and observations, the high Arctic remains one of the largest climate‐data deficient regions on the Earth, so described series is of unique value. To draw conclusions on the climatic changes in the Arctic, it is necessary to analyse the long-term series of continuous, systematic, in situ observations from different locations and comparing the corresponding data, rather than rely on the climatic simulations only. In recent decades, rapid environmental changes occurring in the Atlantic sector of the Arctic are reflected in the data series collected by the operational monitoring conducted at the Hornsund Station. We demonstrate the results of the 40 years-long series of observations. Climatological mean values or totals are given, and we also examined the variability of meteorological variables at monthly and annual scale using the modified Mann-Kendall test for trend and Sen’s method. The relevant daily, monthly, and annual data are provided on the PANGAEA repository (https://doi.org/10.1594/PANGAEA.909042, Wawrzyniak and Osuch, 2019).


Author(s):  
A. Morozov ◽  
G. Avetisov ◽  
G. Antonovskaya ◽  
V. Asming ◽  
S. Baranov ◽  
...  

The article provides an overview and analysis of seismicity within the boundaries of the Arctic region for 2015, a description of seismic station networks, and processing methods. The catalog of earthquakes in the Arctic region was compiled on the basis of catalogs of several organizations and seismological centers. In total, 334 earthquakes are included in the earthquake catalog. Most of the earthquakes that occurred in 2015, including all the strongest earthquakes, were located within the mid-ocean ridges of Mon, Knipovich and Gakkel. In the offshore territories, most of the earthquakes were confined to the Svalbard archipelago, in particular, to the seismically active zone in the Sturfjord strait. The renewal of instrumental seismological observations in 2011 (station ZFI) on Alexandra Land Island in the Franz Josef Land archipelago made it possible to record weak earthquakes in the north of the shelf of the Barents and Kara Seas. For twelve earthquakes, the focal mechanism parameters are presented according to the Global CMT catalog.


1991 ◽  
Vol 10 (2) ◽  
pp. 247-258
Author(s):  
Jørgen Taagholt

About 4000 years ago the first immigration of Inuit tribes explorated Greenland, and about 1000 years ago the Norsemen explorated southwest Greenland; and Icelandic sagas describe every-day life. The early search for the Northwest Passage years ago was followed by intensive whaling during 17th and 18th centuries. The connection between Greenland and Scandinavia was re-established by Hans Egede, who started his missionary and explorationary activity in 1721, whereafter polymaths from Denmark and other countries contributed to our scientific knowledge. Several attempts to reach the North Pole resulted in new information about the High Arctic Greenland, while local Inuit, such as Hans Hendrik, played an important role in several expeditions in the Arctic. The growing Danish and foreign scientific expeditions led to the Danish government establishing in 1878 established the Commission for Scientific Research in Greenland, whose mandate was to coordinate such research.


2017 ◽  
Vol 149 (3) ◽  
pp. 357-371 ◽  
Author(s):  
Elyssa R. Cameron ◽  
Christopher M. Buddle

AbstractArctic ecosystems are characterised by a mosaic of distinct microhabitats, which play a key role in structuring biodiversity. Understanding species diversity in relation to these microhabitats, and how communities are structured seasonally, is imperative to properly conserve, monitor, and manage northern biodiversity. Spiders (Arachnida: Araneae) are dominant arthropod predators in the Arctic, yet the seasonal change in their communities in relation to microhabitat variation is relatively unknown. This research quantified how spider assemblages are structured seasonally and by microhabitat, near Cambridge Bay, Nunavut, Canada. In 2014, spiders were collected in 240 pan and pitfall traps placed in common microhabitat types (two wet and two dry) from 3 July to 11 August, the active season in the high Arctic. In total, 10 353 spiders from 22 species and four families were collected. Non-metric multidimensional scaling ordinations revealed that spider assemblages from wet habitats were distinct from those occurring in drier habitats, but that differences within each of those habitats were not evident. Abundance and diversity was highest in wet habitats and differed significantly from dry habitats; both these variables decreased seasonally. Spider assemblages in the north are structured strongly along moisture gradients, and such data informs planning for future ecological monitoring in the Arctic.


2020 ◽  
Author(s):  
Diana Soloveva ◽  
Larisa Savelieva ◽  
Sergei Verkulich

<p>Pollen analysis is one of the methods that allow revealing ecological and climatic changes in the<br>past based on vegetation reconstruction. Spitsbergen (Svalbard) archipelago, as well as other<br>regions of the Arctic, is difficult for creation of regional models of vegetation and climate<br>development during the Holocene. This is primarily due to the limited distribution, low thickness<br>and relative young ages (usually this is the late Holocene) of organogenic deposits, which are<br>most suitable for palynological studies.<br>Nordenskiöld Land is located in the central part of the West Spitsbergen Island and different the<br>most favorable climatic conditions. The largest number of sites suitable for paleobotanical<br>researches is located here. The Coles valley has length about 12 km, well-developed profile and<br>situated on the north shore of Nordenskiöld Land. The field campaign with studying of<br>floodplain peat sediments from Coles River valley was carried out in August 2018. Two sites<br>(K18-15, K18-16) were studied on the remains of first terrace. Excavated deposits are<br>represented by leafy peat of varying degrees of decomposition with silt lenses. The laboratory<br>studies of sediments included radiocarbon dating, pollen and non-pollen palynomorph analyses.<br>They were carried out in Laboratory of St-Petersburg State University and Russian chemical-<br>analytical Lab on the Spitsbergen archipelago.<br>The pollen analysis of two sections from Coles River valley allowed us to reconstruct<br>paleovegetation changes. Samples from K18-15 site contain more mineral components and more<br>pollen and spores than samples from K18-16 site. This is probably due to the inflow of pollen<br>with water. The main components of spore-pollen spectra are Poaceae, Cyperaceae, Salix and<br>Betula sect. Nanae. The relationship between these taxa shows a different degree of moisture of<br>the study area under the dominance of the grass - sedge tundra. Thus, a significant influence on<br>the formation of spores and pollen spectra in the studied deposits is played by the dynamics of<br>the sedimentation.<br>Results of radiocarbon dating showed that studied deposits formed during mid and late<br>Holocene.<br>A generalization of all available palynological data on the Nordenskjöld land made it possible to<br>construct a scheme of dwarf birch (Betula sect. Nanae) distribution during the Middle and Late<br>Holocene. A comparison of received data with our previous data and published data from<br>Nordenskiöld Land shows the asynchronous of appear and distribution of shrubs on these area<br>from ~5000 to ~2500 yrs ago.</p>


2010 ◽  
Vol 107 (5) ◽  
pp. 2078-2081 ◽  
Author(s):  
Carsten Egevang ◽  
Iain J. Stenhouse ◽  
Richard A. Phillips ◽  
Aevar Petersen ◽  
James W. Fox ◽  
...  

The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes.


Sign in / Sign up

Export Citation Format

Share Document