Archaeological investigations (archaeometry)

2018 ◽  
Vol 3 (9) ◽  
Author(s):  
Anastasia Rousaki ◽  
Luc Moens ◽  
Peter Vandenabeele

Abstract Archaeometry is the research area on the edge between humanities and natural sciences: it uses and optimises methods from chemistry, spectroscopy, physics, biology, etc. to help answering research questions from humanities. In general, these objects are investigated for several reasons. Besides the fundamental interest to know about the materials that were used in the past, the study of artefacts can support their preservation, either by helping to select optimal storage or display conditions, either by investigating decay pathways and suggesting solutions. Other reasons for art analysis include provenance studies, dating the artefact or identifying forgeries. Since several years, Raman spectroscopy is increasingly applied for the investigation of objects of art or archaeology. The technique is well-appreciated for the limited (or even absent) sample preparation, the relative straightforward interpretation of the spectra (by fingerprinting - comparing them against a database of reference pigments) and its speed of analysis. Moreover, the small spectral footprint – allowing to record a molecular spectrum of particles down to 1 µm, the typical size of pigment grains – is certainly a positive property of the technique. Raman spectroscopy can be considered as rather versatile, as inorganic as well as organic materials can be studied, and as the technique can gather information on crystalline as well as on non-crystalline phases. As a consequence, Raman spectroscopy can be used to study antique objects and twentieth-century synthetic (organic) materials – illustrating the wide range of applications. Finally, the technique is as non-destructive, provided the laser power is kept sufficiently low not to damage the artwork. In literature, the terms “non-invasive” and “non-destructive” are used, where the first term means that no sampling is involved, and the latter term indicates that no sample is taken or that during analysis the sample is not consumed (destroyed) and remains available for further analysis.

Minerals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1084
Author(s):  
Anastasiya D. Kalugina ◽  
Dmitry A. Zedgenizov

The composition of clinopyroxenes is indicative for chemical and physical properties of mantle substrates. In this study, we present the results of Raman spectroscopy examination of clinopyroxene inclusions in natural diamonds (n = 51) and clinopyroxenes from mantle xenoliths of peridotites and eclogites from kimberlites (n = 28). The chemical composition of studied clinopyroxenes shows wide variations indicating their origin in different mantle lithologies. All clinopyroxenes have intense Raman modes corresponding to metal-oxygen translation (~300–500 cm−1), stretching vibrations of bridging O-Si-Obr (ν11~670 cm−1), and nonbridging atoms O-Si-Onbr (ν16~1000 cm−1). The peak position of the stretching vibration mode (ν11) for the studied clinopyroxenes varies in a wide range (23 cm−1) and generally correlates with their chemical composition and reflects the diopside-jadeite heterovalent isomorphism. These correlations may be used for rough estimation of these compounds using the non-destructive Raman spectroscopy technique.


2007 ◽  
Vol 15 (6) ◽  
pp. 6-11 ◽  
Author(s):  
S.V. Prikhodko ◽  
C. Fischer ◽  
R. Boytner ◽  
M. C. Lozada ◽  
M. Uribe ◽  
...  

Variable pressure scanning electron microscopy (VPSEM) coupled with other non-destructive analytical methods, such as energy dispersive (EDS) and Raman spectroscopy (RS) offers new capabilities for non-invasive imaging and chemical characterization of archaeological materials. This article underlines the application of VPSEM-EDS-RS on bioarchaeological specimens of pre-Columbian mummies from the Tarapacá Valley in northern Chile. The aim of the scientific investigations is to identify nonanatomical features and to provide qualitative and quantitative information at molecular levels, complementing the morphological record from studies in physical anthropology, in an effort to understand mortuary practices in the Tarapacá Valley and the effects of the burial environment in the preservation of mummified human remains.


2018 ◽  
Vol 15 (30) ◽  
pp. 344
Author(s):  
Dalva Lucia Araujo Faria

As últimas décadas tem presenciado um crescente aumento no uso de métodos físico-químicos de análise de bens culturais. Algumas dessas técnicas tem se mostrado particularmente úteis pelo caráter não invasivo e não destrutivo que apresentam e, dentre elas, a espectroscopia Raman apresenta posição de destaque. Neste artigo, essas características da técnica são detalhadas, bem como são apresentados os fundamentos teóricos do espalhamento inelástico de luz e discutidos alguns aspectos práticos de sua utilização. Finalmente, é apresentado um levantamento detalhado dos grupos de pesquisa da América do Sul, voltados ao estudo de bens culturais, que tem se utilizado dessa ferramenta analítica e em qual tipo de questionamentos vem sendo aplicada. Abstract: The last decades have witnessed an ever growing increase in the usage of physico-chemical methods to investigate cultural heritage problems. Some of these techniques are proving to be particularly useful in such a context, due to their non-invasive and non-destructive nature; among them, Raman spectroscopy occupies a prominent position. In this paper, such characteristics of the technique are detailed and the physical basis of inelastic light scattering are presented, together with some practical aspects of its applications. Finally, it is here offered a detailed survey in the literature on the South American research groups devoted to the investigation of cultural heritage issues who are using Raman spectroscopy, and the type of interrogation carried on. 


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3723 ◽  
Author(s):  
Hacer Akpolat ◽  
Mark Barineau ◽  
Keith A. Jackson ◽  
Mehmet Z. Akpolat ◽  
David M. Francis ◽  
...  

Our objective was to develop a rapid technique for the non-invasive profiling and quantification of major tomato carotenoids using handheld Raman spectroscopy combined with pattern recognition techniques. A total of 106 samples with varying carotenoid profiles were provided by the Ohio State University Tomato Breeding and Genetics program and Lipman Family Farms (Naples, FL, USA). Non-destructive measurement from the surface of tomatoes was performed by a handheld Raman spectrometer equipped with a 1064 nm excitation laser, and data analysis was performed using soft independent modelling of class analogy (SIMCA)), artificial neural network (ANN), and partial least squares regression (PLSR) for classification and quantification purposes. High-performance liquid chromatography (HPLC) and UV/visible spectrophotometry were used for profiling and quantification of major carotenoids. Seven groups were identified based on their carotenoid profile, and supervised classification by SIMCA and ANN clustered samples with 93% and 100% accuracy based on a validation test data, respectively. All-trans-lycopene and β-carotene levels were measured with a UV-visible spectrophotometer, and prediction models were developed using PLSR and ANN. Regression models developed with Raman spectra provided excellent prediction performance by ANN (rpre = 0.9, SEP = 1.1 mg/100 g) and PLSR (rpre = 0.87, SEP = 2.4 mg/100 g) for non-invasive determination of all-trans-lycopene in fruits. Although the number of samples were limited for β-carotene quantification, PLSR modeling showed promising results (rcv = 0.99, SECV = 0.28 mg/100 g). Non-destructive evaluation of tomato carotenoids can be useful for tomato breeders as a simple and rapid tool for developing new varieties with novel profiles and for separating orange varieties with distinct carotenoids (high in β-carotene and high in cis-lycopene).


2016 ◽  
Vol 187 ◽  
pp. 329-339 ◽  
Author(s):  
Benjamin Gardner ◽  
Nicholas Stone ◽  
Pavel Matousek

Here we demonstrate for the first time the viability of characterising non-invasively the subsurface temperature of SERS nanoparticles embedded within biological tissues using spatially offset Raman spectroscopy (SORS). The proposed analytical method (T-SESORS) is applicable in general to diffusely scattering (turbid) media and features high sensitivity and high chemical selectivity. The method relies on monitoring the Stokes and anti-Stokes bands of SERS nanoparticles in depth using SORS. The approach has been conceptually demonstrated using a SORS variant, transmission Raman spectroscopy (TRS), by measuring subsurface temperatures within a slab of porcine tissue (5 mm thick). Root-mean-square errors (RMSEs) of 0.20 °C were achieved when measuring temperatures over ranges between 25 and 44 °C. This unique capability complements the array of existing, predominantly surface-based, temperature monitoring techniques. It expands on a previously demonstrated SORS temperature monitoring capability by adding extra sensitivity stemming from SERS to low concentration analytes. The technique paves the way for a wide range of applications including subsurface, chemical-specific, non-invasive temperature analysis within turbid translucent media including: the human body, subsurface monitoring of chemical (e.g. catalytic) processes in manufacture quality and process control and research. Additionally, the method opens prospects for control of thermal treatment of cancer in vivo with direct non-invasive feedback on the temperature of mediating plasmonic nanoparticles.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 587
Author(s):  
Maksim N. Moskovskiy ◽  
Aleksey V. Sibirev ◽  
Anatoly A. Gulyaev ◽  
Stanislav A. Gerasimenko ◽  
Sergey I. Borzenko ◽  
...  

Identification of specific mycotoxins p. Fusarium contained in infected winter wheat seeds can be achieved by visually recognizing their distinctive phenotypic species. The visual identification (ID) of species is subjective and usually requires significant taxonomic knowledge. Methods for the determination of various types of mycotoxins of the p. Fusarium are laborious and require the use of chemical invasive research methods. In this research, we investigate the possibility of using Raman spectroscopy (RS) as a tag-free, non-invasive and non-destructive analytical method for the rapid and accurate identification of p. Fusarium. Varieties of the r. Fusarium can produce mycotoxins that directly affect the DNA, RNA and chemical structure of infected seeds. Analysis of spectra by RS methods and chemometric analysis allows the identification of healthy, infected and contaminated seeds of winter wheat with varieties of mycotoxins p. Fusarium. Raman seed analysis provides accurate identification of p. Fusarium in 96% of samples. In addition, we present data on the identification of carbohydrates, proteins, fiber and other nutrients contaminated with p. Fusarium seeds obtained using spectroscopic signatures. These results demonstrate that RS enables rapid, accurate and non-invasive screening of seed phytosanitary status.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
William Z. Payne ◽  
Dmitry Kurouski

AbstractOur civilization has to enhance food production to feed world’s expected population of 9.7 billion by 2050. These food demands can be met by implementation of innovative technologies in agriculture. This transformative agricultural concept, also known as digital farming, aims to maximize the crop yield without an increase in the field footprint while simultaneously minimizing environmental impact of farming. There is a growing body of evidence that Raman spectroscopy, a non-invasive, non-destructive, and laser-based analytical approach, can be used to: (i) detect plant diseases, (ii) abiotic stresses, and (iii) enable label-free phenotyping and digital selection of plants in breeding programs. In this review, we critically discuss the most recent reports on the use of Raman spectroscopy for confirmatory identification of plant species and their varieties, as well as Raman-based analysis of the nutrition value of seeds. We show that high selectivity and specificity of Raman makes this technique ideal for optical surveillance of fields, which can be used to improve agriculture around the world. We also discuss potential advances in synergetic use of RS and already established imaging and molecular techniques. This combinatorial approach can be used to reduce associated time and cost, as well as enhance the accuracy of diagnostics of biotic and abiotic stresses.


RSC Advances ◽  
2019 ◽  
Vol 9 (56) ◽  
pp. 32744-32752
Author(s):  
Meng-Wen Peng ◽  
Xiang-Yang Wei ◽  
Qiang Yu ◽  
Peng Yan ◽  
You-Peng Chen ◽  
...  

Raman spectroscopy yields a fingerprint spectrum and is of great importance in medical and biological sciences as it is non-destructive, non-invasive, and available in the aqueous environment.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 406
Author(s):  
Noemi Proietti ◽  
Paola Calicchia ◽  
Francesco Colao ◽  
Sara De Simone ◽  
Valeria Di Tullio ◽  
...  

San Nicola in Carcere, one of the minor basilicas in the historical center of Rome, was the location of a wide investigation campaign of the water-related deterioration causes, present in the lower sector of the apse and adjacent pillars, affected by water infiltrations, mould and salt efflorescence. The results obtained identify the presence of water content and related effects mainly on the sides of the apsidal wall. This work focuses on the use of five Non-Destructive Techniques (NDT) and intends to show the gains obtained by integrating widely interdisciplinary methods, namely the Infrared Thermography (IRT), the Unilateral Nuclear Magnetic Resonance (Unilateral NMR), the Acoustic Tomography (AT), the Acoustic Imaging (AI) and the Laser-Induced Fluorescence (LIF). All the techniques contribute to the rapid, non-invasive and early identification of the moisture distribution, while some of them (LIF and AI) also address the determination of some moisture effects. The integrated use of different techniques helps to take the multidisciplinary point of view necessary to formulate an effective restoration intervention based on a sound scientific rationale; nonetheless, it allows to experiment a holistic approach, verifying the potential of a wide range of NDTs available within the context of a restoration yard.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi125-vi125
Author(s):  
Felix Kleine Borgmann ◽  
Gilbert Georg Klamminger ◽  
Laurent Mombaerts ◽  
Karoline Klein ◽  
Finn Jelke ◽  
...  

Abstract BACKGROUND Raman Spectra have been shown to be sufficiently characteristic to their samples of origin that they can be used in a wide range of applications including distinction of intracranial tumors. While not replacing pathological analysis, the advantage of non-destructive sample analysis and extremely fast feedback make this technique an interesting tool for surgical use. METHODS We sampled intractanial tumors from more than 300 patients at the Centre Hospitalier Luxembourg over a period of three years and compared the spectra of different tumor entities, different tumor subregions and healthy surrounding tissue. We created machine-learning based classifiers that include tissue identification as well as diagnostics. RESULTS To this end, we solved several classes in the intracranial tumor classification, and developed classifiers to distinguish primary central nervous system lymphoma from glioblastoma, which is an important differential diagnosis, as well as meningioma from the surrounding healthy dura mater for identification of tumor tissue. Within glioblastoma, we resolve necrotic, vital tumor tissue and peritumoral infiltration zone.We are currently developing a multi-class classifier incorporating all tissue types measured. CONCLUSIONS Raman Spectroscopy has the potential to aid the surgeon in the surgery theater by providing a quick assessment of the tissue analyzed with regards to both tumor identity and tumor margin identification. Once a reliable classifier based on sufficient patient samples is developed, this may even be integrated into a surgical microscope or a neuronavigation system.


Sign in / Sign up

Export Citation Format

Share Document