scholarly journals Magneto-electric multiferroics: designing new materials from first-principles calculations

2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Julien Varignon ◽  
Nicholas C. Bristowe ◽  
Eric Bousquet ◽  
Philippe Ghosez

Abstract In parallel with the revival of interest for magneto-electric multiferroic materials in the beginning of the century, first-principles simulations have grown incredibly in efficiency during the last two decades. Density functional theory calculations, in particular, have so become a must-have tool for physicists and chemists in the multiferroic community. While these calculations were originally used to support and explain experimental behaviour, their interest has progressively moved to the design of novel magneto-electric multiferroic materials. In this article, we mainly focus on oxide perovskites, an important class of multifunctional material, and review some significant advances to which contributed first-principles calculations. We also briefly introduce the various theoretical developments that were at the core of all these advances.

2017 ◽  
Vol 19 (5) ◽  
pp. 3679-3687 ◽  
Author(s):  
Tao Yang ◽  
Masahiro Ehara

Using density functional theory calculations, we discussed the geometric and electronic structures and nucleation of small Co clusters on γ-Al2O3(100) and γ-Al2O3(110) surfaces.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49214-49220 ◽  
Author(s):  
Xiaofeng Li ◽  
Junyi Du

Using an unbiased structure search method based on particle-swarm optimization algorithms in combination with density functional theory calculations, we investigate the phase stability and electronic properties of NbB3 under high pressures.


2011 ◽  
Vol 684 ◽  
pp. 1-29 ◽  
Author(s):  
Peter Entel ◽  
Antje Dannenberg ◽  
Mario Siewert ◽  
Heike C. Herper ◽  
Markus E. Gruner ◽  
...  

The structural and magnetic order are the decisive elements which vastly determine the properties of smart ternary intermetallics such as X2YZ Heusler alloys. Here, X and Y are transition metal elements and Z is an element from the III-V group. In order to give a precise prescription of the possibilities to optimize the magnetic shape memory and magnetocaloric effects of these alloys, we use density functional theory calculations. In particular, we outline how one may find new intermetallics which show higher Curie and martensite transformation temperatures when compared with the prototypical magnetic shape-memory alloy Ni2MnGa. Higher operation temperatures are needed for technological applications at elevated temperatures.


RSC Advances ◽  
2014 ◽  
Vol 4 (110) ◽  
pp. 64601-64607 ◽  
Author(s):  
Xing Ming ◽  
Xing Meng ◽  
Qiao-Ling Xu ◽  
Fei Du ◽  
Ying-Jin Wei ◽  
...  

The crystallographic structure stability, spin state and electronic structure variation in tetragonal multiferroic material BiCoO3under uniaxial pressure are investigated by means of first-principles density functional theory calculations.


2013 ◽  
Vol 91 (1) ◽  
pp. 81-84
Author(s):  
Aqeel Mohsin Ali

The density functional theory calculations are applied for C20 cage fullerenes. Furan, pyrole, and phenylvinyle monomers are made to interact with a C20 cage at the same C position. An electric field was applied with varying strength. Computations were carried out for all cases at the B3LYP/6-31G* level. The structure, energetic, and relative stabilities of the compounds were compared with each other and analyzed. In addition, the electric field dependent and independent electronic transition spectra of the proposed stable neutral C20 cage are investigated.


Author(s):  
Bo Kong ◽  
Tixian Zeng ◽  
Wentao Wang

Abstract: In this work, the n-type and p-type conductivity mechanisms of bulk BiOCl are systematically investigated using first-principles calculations. Under the O-rich growth conditions, BiOCl presents the intrinsic p-type conductivity,...


2018 ◽  
Vol 47 (10) ◽  
pp. 3303-3320 ◽  
Author(s):  
F. Failamani ◽  
R. Podloucky ◽  
J. Bursik ◽  
G. Rogl ◽  
H. Michor ◽  
...  

The crystal structures of two novel borides τ5-Ni3Zn2B and τ6-Ni2ZnB, were determined. For these newly found phases as well as for τ3-Ni21Zn2B20 and τ4-Ni3ZnB2 density functional theory calculations (DFT-VASP) were performed.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 724
Author(s):  
Qian Wu ◽  
Ping Wang ◽  
Yan Liu ◽  
Han Yang ◽  
Jingsi Cheng ◽  
...  

The electronic structures and optical characteristics of yttrium (Y)-doped ZnO monolayers (MLs) with vacancy (zinc vacancy, oxygen vacancy) were investigated by the first-principles density functional theory. Calculations were performed with the GGA+U (generalized gradient approximation plus U) approach, which can accurately estimate the energy of strong correlation semiconductors. The results show that the formation energy values of Y-doped ZnO MLs with zinc or oxygen vacancy (VZn, VO) are positive, implying that the systems are unstable. The bandgap of Y-VZn-ZnO was 3.23 eV, whereas that of Y-VO-ZnO was 2.24 eV, which are smaller than the bandgaps of pure ZnO ML and Y-doped ZnO MLs with or without VO. Impurity levels appeared in the forbidden band of ZnO MLs with Y and vacancy. Furthermore, Y-VZn-ZnO will result in a red-shift of the absorption edge. Compared with the pure ZnO ML, ZnO MLs with one defect (Y, VZn or VO), and Y-VZn-ZnO, the absorption coefficient of Y-VO-ZnO was significantly enhanced in the visible light region. These findings demonstrate that Y-VO-ZnO would have great application potential in photocatalysis.


RSC Advances ◽  
2020 ◽  
Vol 10 (42) ◽  
pp. 24867-24876
Author(s):  
B. Moses Abraham

We report the high pressure structural and vibrational properties of 5,5′-bitetrazole-1,1′-diolate based energetic ionic salts via dispersion-corrected density functional theory calculations.


2019 ◽  
Vol 944 ◽  
pp. 761-769 ◽  
Author(s):  
Ying Jie Sun ◽  
Kai Xiong ◽  
Shun Meng Zhang ◽  
Yong Mao

The structural, mechanical, and thermodynamic properties of platinum group metals (Pt, Pd, and Ru) were systematically investigated by first-principles calculations based on density functional theory. Comparative studies show that Ru has the best comprehensive mechanical properties. Based on the Pugh’s rule and Poisson’s ratio, it is judged that Pt and Pd are ductility materials, and Ru exhibits obvious brittleness. Furthermore, the elastic anisotropy is also discussed by plotting both the 3D contours and the 2D planar projections of Young's modulus and shear modulus. The predicted elastic anisotropy factors indicate that the degree of elastic anisotropy of Pd is significant, while Ru has the smallest elastic anisotropy. By using the Clarke’s model, the minimum thermal conductivities of these metals have also been analyzed, and the results indicate that the low minimum thermal conductivity is proportional to the Debye temperature ΘD. The above results can provide a valuable reference for revealing the microscopic deformation mechanism and designing new materials.


Sign in / Sign up

Export Citation Format

Share Document