Nickel ion removal from aqueous solutions through the adsorption process: a review

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammadtaghi Vakili ◽  
Mohd Rafatullah ◽  
Jing Yuan ◽  
Haider M. Zwain ◽  
Amin Mojiri ◽  
...  

AbstractRecently, removal of nickel ions has been gaining a lot of attention because of the negative impact of nickel ions on the environment. The aim of this review paper is to organize the scattered available information on removal of nickel ions from aqueous solutions through the adsorption process. Survey on investigated materials suggests that composite- and polymer-based adsorbents have the most effective capability for nickel adsorption. The composite material class, i.e. CaCO3-maltose, followed by biopolymer-based material showed the highest Ni(II) adsorption capacity of 769.23 and 500 mg/g, respectively. The importance of treatment parameters (i.e. pH, temperature, contact time, and metal ion concentration) is discussed, together with their effect on the underlying physicochemical phenomena, giving particular attention to the adsorption/desorption mechanism. It was ascertained that adsorption of nickel ions is pH dependent and the optimal pH range for adsorption of Ni(II) ions was in range of 6–8. In general, nickel adsorption is an endothermic and spontaneous process that mainly occurs by forming a monolayer on the adsorbent (experimental data are often fitted by Langmuir isotherms and pseudo-second-order kinetics). Regeneration (i.e. desorption) is also reviewed, suggesting that acidic eluents (e.g. HCl and HNO3) allow, in most of the cases, an efficacious spent adsorbent recovery. The percentage use of desorption agents followed the order of acids (77%) > chelators (8.5%) > alkalis (8%) > salts (4.5%) > water (2%). Helpful information about adsorption and desorption of nickel ions from aqueous solutions is provided.

2017 ◽  
Vol 76 (7) ◽  
pp. 1895-1906 ◽  
Author(s):  
Sowmya Vilvanathan ◽  
S. Shanthakumar

The biosorption capability of Chrysanthemum indicum to remove nickel ions from aqueous solution in a fixed-bed column was examined in this study. Native C. indicum flower waste was improved for its biosorptive potential by pyrolysis to obtain its biochar form and, thereby, both raw (CIF-R) and biochar (CIF-BC) forms of the flower were used for Ni(II) removal. Fixed bed column studies were conducted to examine the influence of bed height (1.0–3.0 cm), flow rate (1.0–5.0 mL min−1) and initial metal ion concentration (25–75 mg L−1). The breakthrough curves (Cout/Cin vs time) were modelled using different dynamic adsorption models, viz. Adams-Bohart, Thomas and Yoon-Nelson model. Interpretation of the data revealed a favorable correlation with the Thomas model with higher R2 values and closer model-predicted and experimental biosorption capacity values. The equilibrium uptake capacity of CIF-R and CIF-BC for Ni(II) were found to be 14.02 and 29.44 mg g−1, respectively. Further, the column was regenerated using HCl as eluent, to desorb the adsorbed Ni(II) ions. The experimental results implied and affirmed the suitability of the biosorbents for nickel ion biosorption with its nature being favorable, efficient, and environmentally friendly.


2009 ◽  
Vol 6 (s1) ◽  
pp. S347-S357 ◽  
Author(s):  
V. Vijayakumaran ◽  
S. Arivoli ◽  
S. Ramuthai

A carbonaceous adsorbent prepared from an indigenous waste, by acid treatment was tested for its efficiency in removing nickel ion. The process parameters studied include agitation time, initial metal ion concentration, carbon dose, pH and temperature. The adsorption followed first order reaction equation and the rate is mainly controlled by intraparticle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacity (Qm) obtained from the Langmuir isotherm plot were found to around 43 mg/g at an initial pH of 7.0. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. The Langmuir and Freundlich adsorption isotherms obtained, positive ΔH0value, pH dependent results and desorption of metal ions in mineral acid suggest that the adsorption of nickel ion on MCC involves chemisorption as well as physisorption mechanism.


2020 ◽  
Vol 38 (7A) ◽  
pp. 1047-1061
Author(s):  
Shurooq T. Remedhan

In the present study commercial zinc oxide (ZnO) nanoparticles in the size of 30 nm were utilized as an adsorbent for the removal of Ni (II) ion from synthetic waste aqueous solution. Adsorption capacity of ZnO for removing Ni (II) ions from aqueous solutions was measured at different pH, adsorbent dose, contact time, temperature and metal ion concentration. Moreover,  adsorption isotherms, kinetics and thermodynamics were studied to understand  the  nature  and  mechanism  of  adsorption. ZnO nanoparticles were characterized by X-Ray diffract analysis(XRD),Fourier Transform Infrared Spectroscopy(FT-IR), scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy(EDS) and Brunauer-Emmett-Teller (BET). The maximum amount of Ni (II) removal were found to be (98.71%) from its aqueous solutions by ZnO nanoparticles which was achieved at the evaluated optimum conditions. The experimental kinetic data were examined using the pseudo-second-order rate model with a high regression coefficient. The adsorption isotherm was well described to the equilibrium data by Langmuir isotherm model (R2=0.990). In addition, the calculated thermodynamic parameters, the standard Gibbs free energy ΔGo, the change in standard enthalpy ∆Ho and the standard entropy change ∆So showed that the adsorption of Ni (II) onto ZnO nanoparticles was feasible, endothermic and spontaneous respectively. The experimental results suggest that ZnO nanoparticles can be used as a potential adsorbent for the efficient removal of heavy metals from aqueous solutions than any other adsorbent because an economical and low- consumption energy due to its ambient operation conditions.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
F. Granados-Correa ◽  
J. Vilchis-Granados ◽  
M. Jiménez-Reyes ◽  
L. A. Quiroz-Granados

The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III) and Eu(III) ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III) and Eu(III) ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III) > La(III) and is dependent on ion concentration, pH, and temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
P. Sujatha ◽  
V. Kalarani ◽  
B. Naresh Kumar

The primary objective of the present study is to evaluate the optimization conditions such as kinetic and equilibrium isotherm models involved in the removal of Ni(II) from the aqueous solutions byTrichoderma viride. The biosorbent was characterized by FTIR and SEM. The optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, initial metal ion concentration, and temperature. The maximum Ni(II) biosorption was obtained at pH 4.5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The kinetic studies indicate that the biosorption process of the metal ion Ni(II) has followed well the pseudo-second-order model. The sum of the square errors (SSE) and chi-square (χ2) tests were also carried out to find the best fit kinetic model and adsorption isotherm. The maximum biosorption capacity (qm) ofT.viridebiomass was found to be 47.6 mg/g for Ni(II) ion. Therefore, it can be concluded thatT.viridebiomass was effective and low-cost potential adsorbent to remove the toxic metal Ni(II) from aqueous solutions. The recovery process of Ni(II) fromT.viridebiomass was found to be higher than 98% by using 0.25 M HNO3. Besides the application of removal of toxic metal Ni(II) from aqueous solutions, the biosorbentT.viridecan be reused for five consecutive sorption-desorption cycles was determined.


2020 ◽  
Vol 85 (10) ◽  
pp. 1371-1382
Author(s):  
Sladjana Meseldzija ◽  
Jelena Petrovic ◽  
Antonije Onjia ◽  
Tatjana Volkov-Husovic ◽  
Aleksandra Nesic ◽  
...  

This study is aimed to evaluate the possibility of lemon peel, as an agro-industrial waste, to remove Fe2+, Zn2+ and Mn2+ from single aqueous solutions and mining wastewater. For this purpose, the influence of various parameters: sorption time, initial pH solution, initial metal ion concentration and a dose of sorbent on the sorption process were studied in batch experiments. The experimental equilibrium data have been analysed utilizing linearized forms of Langmuir, Freundlich, Temkin and Dubinin?Radushkevich isotherms. The Langmuir isotherm provided the best theoretical correlation of the experimental equilibrium data for Fe2+, Zn2+ and Mn2+, with the maximum sorption capacities of 4.40, 5.03 and 4.52 mg g-1, respectively. The percentage of targeted ions removal from single aqueous solutions was 92.9 % (Zn2+), 84.5 % (Fe2+) and 78.2 % (Mn2+). Regarding the sorption capability of lemon peel in mining wastewater, the maximum removal of Fe2+, Zn2+ and Mn2+ from mining wastewater was 49.62, 33.97 and 9.11 %, respectively. In addition, the potential reusability of the lemon peel as sorbent was investigated through desorption study in 0.1M of CH3COO4, HCl and HNO3 solution. The highest rate of desorption was achieved in 0.1 M HCl solution, reached a value of 55.19 % for Mn2+ and 37.24 % for Zn2+, while for Fe2+ the highest value of 25.82 % was achieved in 0.1M HNO3 solution.


Sign in / Sign up

Export Citation Format

Share Document