Experimental Investigation of Thermodynamics, Kinetics, and Equilibrium of Nickel Ion Removal from Wastewater Using Zinc Oxide Nanoparticles as the Adsorbent

2020 ◽  
Vol 38 (7A) ◽  
pp. 1047-1061
Author(s):  
Shurooq T. Remedhan

In the present study commercial zinc oxide (ZnO) nanoparticles in the size of 30 nm were utilized as an adsorbent for the removal of Ni (II) ion from synthetic waste aqueous solution. Adsorption capacity of ZnO for removing Ni (II) ions from aqueous solutions was measured at different pH, adsorbent dose, contact time, temperature and metal ion concentration. Moreover,  adsorption isotherms, kinetics and thermodynamics were studied to understand  the  nature  and  mechanism  of  adsorption. ZnO nanoparticles were characterized by X-Ray diffract analysis(XRD),Fourier Transform Infrared Spectroscopy(FT-IR), scanning electron microscopy (SEM),energy dispersive X-ray spectroscopy(EDS) and Brunauer-Emmett-Teller (BET). The maximum amount of Ni (II) removal were found to be (98.71%) from its aqueous solutions by ZnO nanoparticles which was achieved at the evaluated optimum conditions. The experimental kinetic data were examined using the pseudo-second-order rate model with a high regression coefficient. The adsorption isotherm was well described to the equilibrium data by Langmuir isotherm model (R2=0.990). In addition, the calculated thermodynamic parameters, the standard Gibbs free energy ΔGo, the change in standard enthalpy ∆Ho and the standard entropy change ∆So showed that the adsorption of Ni (II) onto ZnO nanoparticles was feasible, endothermic and spontaneous respectively. The experimental results suggest that ZnO nanoparticles can be used as a potential adsorbent for the efficient removal of heavy metals from aqueous solutions than any other adsorbent because an economical and low- consumption energy due to its ambient operation conditions.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammadtaghi Vakili ◽  
Mohd Rafatullah ◽  
Jing Yuan ◽  
Haider M. Zwain ◽  
Amin Mojiri ◽  
...  

AbstractRecently, removal of nickel ions has been gaining a lot of attention because of the negative impact of nickel ions on the environment. The aim of this review paper is to organize the scattered available information on removal of nickel ions from aqueous solutions through the adsorption process. Survey on investigated materials suggests that composite- and polymer-based adsorbents have the most effective capability for nickel adsorption. The composite material class, i.e. CaCO3-maltose, followed by biopolymer-based material showed the highest Ni(II) adsorption capacity of 769.23 and 500 mg/g, respectively. The importance of treatment parameters (i.e. pH, temperature, contact time, and metal ion concentration) is discussed, together with their effect on the underlying physicochemical phenomena, giving particular attention to the adsorption/desorption mechanism. It was ascertained that adsorption of nickel ions is pH dependent and the optimal pH range for adsorption of Ni(II) ions was in range of 6–8. In general, nickel adsorption is an endothermic and spontaneous process that mainly occurs by forming a monolayer on the adsorbent (experimental data are often fitted by Langmuir isotherms and pseudo-second-order kinetics). Regeneration (i.e. desorption) is also reviewed, suggesting that acidic eluents (e.g. HCl and HNO3) allow, in most of the cases, an efficacious spent adsorbent recovery. The percentage use of desorption agents followed the order of acids (77%) > chelators (8.5%) > alkalis (8%) > salts (4.5%) > water (2%). Helpful information about adsorption and desorption of nickel ions from aqueous solutions is provided.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Reza Hasanzadeh ◽  
Peyman Najafi Moghadam ◽  
Naeimeh Bahri-Laleh ◽  
Ehsan Nazarzadeh Zare

Chelating magnetic nanocomposites have been considered as suitable materials for removal of heavy metal ions for water treatment. In this work poly(glycidyl methacrylate-maleic anhydride) copolymer (PGMA-MAn) is modified with 4-aminobenzenesulfonic acid (ABSAc) and subsequently the product reacted with modified Fe3O4 nanoparticles and 1,2-ethanedithiol (EDT) in the presence of ultrasonic irradiation for preparation of tridimensional chelating magnetic nanocomposite. Synthesized magnetic nanocomposite was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX), elemental mapping analysis (EMA), Brunauer-Emmett-Teller (BET), and thermal gravimetric analysis (TGA). The adsorption behavior of Cu(II) ions was investigated by synthesized nanocomposite in various parameters such as pH, contact time, metal ion concentration, and adsorbent dosage. The equilibrium distribution coefficient (kd) was determined and the findings prove that the kd value is approximately high in the case of all selected metal ions. The synthesized nanocomposite exhibited good tendency for removing Cu(II) ions from aqueous solutions even at an acidic pH.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1068
Author(s):  
Xinyue Zhang ◽  
Yani Guo ◽  
Wenjun Li ◽  
Jinyuan Zhang ◽  
Hailiang Wu ◽  
...  

The treatment of wastewater containing heavy metals and the utilization of wool waste are very important for the sustainable development of textile mills. In this study, the wool keratin modified magnetite (Fe3O4) powders were fabricated by using wool waste via a co-precipitation technique for removal of Cu2+ ions from aqueous solutions. The morphology, chemical compositions, crystal structure, microstructure, magnetism properties, organic content, and specific surface area of as-fabricated powders were systematically characterized by various techniques including field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), thermogravimetric (TG) analysis, and Brunauer–Emmett–Teller (BET) surface area analyzer. The effects of experimental parameters such as the volume of wool keratin hydrolysate, the dosage of powder, the initial Cu2+ ion concentration, and the pH value of solution on the adsorption capacity of Cu2+ ions by the powders were examined. The experimental results indicated that the Cu2+ ion adsorption performance of the wool keratin modified Fe3O4 powders exhibited much better than that of the chitosan modified ones with a maximum Cu2+ adsorption capacity of 27.4 mg/g under favorable conditions (0.05 g powders; 50 mL of 40 mg/L CuSO4; pH 5; temperature 293 K). The high adsorption capacity towards Cu2+ ions on the wool keratin modified Fe3O4 powders was primarily because of the strong surface complexation of –COOH and –NH2 functional groups of wool keratins with Cu2+ ions. The Cu2+ ion adsorption process on the wool keratin modified Fe3O4 powders followed the Temkin adsorption isotherm model and the intraparticle diffusion and pseudo-second-order adsorption kinetic models. After Cu2+ ion removal, the wool keratin modified Fe3O4 powders were easily separated using a magnet from aqueous solution and efficiently regenerated using 0.5 M ethylene diamine tetraacetic acid (EDTA)-H2SO4 eluting. The wool keratin modified Fe3O4 powders possessed good regenerative performance after five cycles. This study provided a feasible way to utilize waste wool textiles for preparing magnetic biomass-based adsorbents for the removal of heavy metal ions from aqueous solutions.


2014 ◽  
Vol 70 (10) ◽  
pp. 1362-1367 ◽  
Author(s):  
Emmanuel Nji ◽  
Dianfan Li ◽  
Declan A. Doyle ◽  
Martin Caffrey

The prokaryotic lysine-specific permease (LysP) belongs to the amino acid–polyamine–organocation (APC) transporter superfamily. In the cell, members of this family are responsible for the uptake and recycling of nutrients, for the maintenance of a constant internal ion concentration and for cell volume regulation. The detailed mechanism of substrate selectivity and transport of L-lysine by LysP is not understood. A high-resolution crystal structure would enormously facilitate such an understanding. To this end, LysP fromPseudomonas aeruginosawas recombinantly expressed inEscherichia coliand purified to near homogeneity by immobilized metal ion-affinity chromatography (IMAC) and size-exclusion chromatography (SEC). Hexagonal- and rod-shaped crystals were obtained in the presence of L-lysine and the L-lysine analogue L-4-thialysine by vapour diffusion and diffracted to 7.5 Å resolution. The diffraction data were indexed in space groupP21, with unit-cell parametersa= 169.53,b= 169.53,c= 290.13 Å, γ = 120°.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


This study showed that kaolinite clay modified with Moringa oleifera pods is a promising low cost adsorbent for the removal of metals from aqueous solution because the resultant composite has higher adsorption capacities, and hence a better metal ions removal efficiency. The efficiencies of these adsorbents for the removal of Pb (II) and Cd (II) ions from aqueous solutions were studied as a function of pH, time, adsorbate concentration and adsorbent dose. Adsorption results showed that pH did significantly affect removal of heavy metal ions between pH 3 and 6. Increasing contact time and initial metal ion concentration increased the sorption capacity of the adsorbent for the metal ions. Adsorbent dosage indicated mainly surface phenomena involving sharing of electrons between the adsorbent surface and the metal ion species. The adsorption of metal ions from aqueous solutions of both metal ions at different initial metal ion concentrations reduced the initial adsorption rates of the adsorption of Pb (II) and Cd (II) by unmodified and modified kaolinite clay.


2012 ◽  
Vol 9 (3) ◽  
pp. 1389-1399 ◽  
Author(s):  
R. Hema Krishna ◽  
A. V. V. S. Swamy

The powder of mosambi fruit peelings (PMFP) was used as an adsorbent for the removal of heavy metal like Cr (VI) from aqueous solutions was studied using batch tests. The influence of physico-chemical key parameters such as the initial metal ion concentration, pH, agitation time, adsorbent dosage, and the particle size of adsorbent has been considered in batch tests. Sorbent ability to adsorb Cr (VI) ions was examined and the mechanism involved in the process investigated. The optimum results were determined at an initial metal ion concentration was 10 mg/lit, pH=2, agitation time – 60 min, an adsorbent dose (150 mg/50 ml) and the particle size (0.6 mm). The % adsorption, Langmuir constants [Q0=7.51(mg/g) and b=1.69(mg/lit)] Freundlich constant(Kf=2.94), Lagergren rate constants (Kad(min-1)=5.75 x 10-2) for [Cr(VI)] 10 mg/lit were determined for the adsorption system as a function of sorbate concentration. The equilibrium data obtained were tested using Langmuir, Freundlich adsorption isotherm models, and the kinetic data obtained were fitted to pseudo first order model.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
F. Granados-Correa ◽  
J. Vilchis-Granados ◽  
M. Jiménez-Reyes ◽  
L. A. Quiroz-Granados

The hydroxyapatite was successfully synthesized, characterized, and used as an alternative low-cost adsorbent material to study the adsorption behavior of La(III) and Eu(III) ions from nitrate aqueous solutions as a function of contact time, initial metal ion concentration, pH, and temperature by using a bath technique. The kinetic data correspond very well to the pseudo-second-order equation, and in both cases the uptake was affected by intraparticle diffusion. Isotherm adsorption data were well fitted by the Freundlich model equation with1/n>1, indicating a multilayer and cooperative-type adsorption. Thermodynamic parameters for the adsorption systems were determinated at 293, 303, 313, and 323 K. These parameters show that adsorptions of La(III) and Eu(III) ions on hydroxyapatite are endothermic and spontaneous processes. The adsorption was found to follow the order Eu(III) > La(III) and is dependent on ion concentration, pH, and temperature.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
P. Sujatha ◽  
V. Kalarani ◽  
B. Naresh Kumar

The primary objective of the present study is to evaluate the optimization conditions such as kinetic and equilibrium isotherm models involved in the removal of Ni(II) from the aqueous solutions byTrichoderma viride. The biosorbent was characterized by FTIR and SEM. The optimum biosorption conditions were determined as a function of pH, biomass dosage, contact time, initial metal ion concentration, and temperature. The maximum Ni(II) biosorption was obtained at pH 4.5. The equilibrium data were better fit by the Langmuir isotherm model than by the Freundlich isotherm. The kinetic studies indicate that the biosorption process of the metal ion Ni(II) has followed well the pseudo-second-order model. The sum of the square errors (SSE) and chi-square (χ2) tests were also carried out to find the best fit kinetic model and adsorption isotherm. The maximum biosorption capacity (qm) ofT.viridebiomass was found to be 47.6 mg/g for Ni(II) ion. Therefore, it can be concluded thatT.viridebiomass was effective and low-cost potential adsorbent to remove the toxic metal Ni(II) from aqueous solutions. The recovery process of Ni(II) fromT.viridebiomass was found to be higher than 98% by using 0.25 M HNO3. Besides the application of removal of toxic metal Ni(II) from aqueous solutions, the biosorbentT.viridecan be reused for five consecutive sorption-desorption cycles was determined.


2013 ◽  
Vol 67 (7) ◽  
pp. 1642-1649 ◽  
Author(s):  
Pengfei Zong ◽  
Shoufang Wang ◽  
Chaohui He

Kaolinite/iron oxide magnetic composites (kaolinite/MCs) were used as adsorbent for the removal of Cd(II) from aqueous solutions. The influences of pH, ionic strength, solid/liquid ratio and temperature on Cd(II) sorption on kaolinite/MCs were evaluated. The results showed that the removal of Cd(II) on kaolinite/MCs was strongly dependent on pH and ionic strength. An optimal kaolinite/MCs concentration mass per volume for removal of Cd(II) from aqueous solutions was 1.4 g L–1. The Langmuir and Freundlich models were used to simulate sorption isotherms of Cd(II) at three different temperatures of 293, 313 and 333 K. The sorption of Cd(II) on kaolinite/MCs increased with increasing temperature, and thermodynamic parameters (standard entropy change, enthalpy change and Gibbs free energy change) illustrated that this sorption process was spontaneous and endothermic. The sorption behaviors of Cd(II) were mainly dependent on surface properties of kaolinite/MCs and solution chemistry conditions. The sorption capacity of Cd(II) on kaolinite/MCs was lower than that on kaolinite, because iron oxide particles decreased surface charge of kaolinite leading to less sorption capacity. Due to high magnetism, kaolinite/MCs could be easily separated with an external magnetic field. Kaolinite/MCs could therefore be used as potential adsorbent for preconcentration and immobilization of Cd(II) ions from large volumes of aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document