scholarly journals Orientation of Trans-Saharan Passerine Migrants in Southwestern Spain – Revisited

The Ring ◽  
2019 ◽  
Vol 41 (1) ◽  
pp. 3-15
Author(s):  
Przemysław Busse

Abstract At the end of the 1980s, a relatively large data set was collected from orientation cage tests of nocturnal migrants caught in one locality in south-western Spain. It was published in The Auk in 1989. At the time of publication, the use of orientation cages was a major advance in detailed studies on passerine migration patterns. The basic evaluation procedure was to calculate the average vector of all numbers representing bird activity in a number of sectors of the full wind-rose and to use the Rayleigh test to determine the statistical significance of the distribution. However, due to hidden assumptions in the procedure used at that time, the resulting heading patterns could be called into question in light of further methodological development. The paper revisits the original set of orientation data collected in the last century in the reported study. The new results from the multimodal distribution accepting procedure are compared with the older pictures and are found to be much better at explaining the migration pattern there. In particular, the Garden Warbler and Reed Warbler, which were claimed to be ‘disoriented’, now show acceptable directionality patterns which do not differ in shape from those of other species.

2013 ◽  
Vol 46 (4) ◽  
pp. 960-971 ◽  
Author(s):  
Katja Jöchen ◽  
Thomas Böhlke

Experimental techniques [e.g.electron backscatter diffraction (EBSD)] yield detailed crystallographic information on the grain scale. In both two- and three-dimensional applications of EBSD, large data sets in the range of 105–109single-crystal orientations are obtained. With regard to the precise but efficient micromechanical computation of the polycrystalline material response, small representative sets of crystallographic orientation data are required. This paper describes two methods to systematically reduce experimentally measured orientation data. Inspired by the work of Gao, Przybyla & Adams [Metall. Mater. Trans. A(2006),37, 2379–2387], who used a tessellation of the orientation space in order to compute correlation functions, one method in this work uses a similar procedure to partition the orientation space into boxes, but with the aim of extracting the mean orientation of the data points of each box. The second method to reduce crystallographic texture data is based on a clustering technique. It is shown that, in terms of representativity of the reduced data, both methods deliver equally good results. While the clustering technique is computationally more costly, it works particularly well when the measured data set shows pronounced clusters in the orientation space. The quality of the results and the performance of the tessellation method are independent of the examined data set.


2020 ◽  
Vol 39 (5) ◽  
pp. 6419-6430
Author(s):  
Dusan Marcek

To forecast time series data, two methodological frameworks of statistical and computational intelligence modelling are considered. The statistical methodological approach is based on the theory of invertible ARIMA (Auto-Regressive Integrated Moving Average) models with Maximum Likelihood (ML) estimating method. As a competitive tool to statistical forecasting models, we use the popular classic neural network (NN) of perceptron type. To train NN, the Back-Propagation (BP) algorithm and heuristics like genetic and micro-genetic algorithm (GA and MGA) are implemented on the large data set. A comparative analysis of selected learning methods is performed and evaluated. From performed experiments we find that the optimal population size will likely be 20 with the lowest training time from all NN trained by the evolutionary algorithms, while the prediction accuracy level is lesser, but still acceptable by managers.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruolan Zeng ◽  
Jiyong Deng ◽  
Limin Dang ◽  
Xinliang Yu

AbstractA three-descriptor quantitative structure–activity/toxicity relationship (QSAR/QSTR) model was developed for the skin permeability of a sufficiently large data set consisting of 274 compounds, by applying support vector machine (SVM) together with genetic algorithm. The optimal SVM model possesses the coefficient of determination R2 of 0.946 and root mean square (rms) error of 0.253 for the training set of 139 compounds; and a R2 of 0.872 and rms of 0.302 for the test set of 135 compounds. Compared with other models reported in the literature, our SVM model shows better statistical performance in a model that deals with more samples in the test set. Therefore, applying a SVM algorithm to develop a nonlinear QSAR model for skin permeability was achieved.


2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


Genetics ◽  
1997 ◽  
Vol 146 (3) ◽  
pp. 995-1010 ◽  
Author(s):  
Rafael Zardoya ◽  
Axel Meyer

The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3′ end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNA, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship.


2021 ◽  
pp. 102586
Author(s):  
Chuanjun Du ◽  
Ruoying He ◽  
Zhiyu Liu ◽  
Tao Huang ◽  
Lifang Wang ◽  
...  

2017 ◽  
Vol 128 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Mark L. Scheuer ◽  
Anto Bagic ◽  
Scott B. Wilson

Author(s):  
Johan Lundberg

AbstractTheories of inter-jurisdictional tax and yardstick competition assume that the tax decisions of one jurisdiction will influence the tax decisions of other jurisdictions. This paper empirically addresses the issue of horizontal dependence in local personal income tax rates across jurisdictions. Based on a large data set covering Swedish municipalities over a period of 14 years, we test for interactions across municipalities that share a common border, across municipalities within a distance of 100 km of each other, and across municipalities with similar political representation in the local council. We also test the hypothesis that the tax rate of relatively larger municipalities has a greater influence on their neighbors' tax rate compared to the influence of their smaller neighbors. Our results suggest that when lagged tax rates are controlled for, the horizontal correlation across municipalities that share a common border or are within a distance of 100 km from each other becomes insignificant. This result is of importance as it suggests that lagged tax rates should be included or at least tested for when testing for horizontal interactions or mimicking in local tax rates. However, our results support the hypothesis of horizontal interactions across municipalities that share a common border when the influence of neighboring municipalities is also weighted by their relative population size, i.e. relatively larger neighbors tend to have a greater impact on their neighbor's tax rates than their relatively smaller neighbors. This is of importance as it suggests that distance or proximity matters, although only in combination with the relative population size. We also find some evidence of horizontal dependence across municipalities with similar political preferences.


Sign in / Sign up

Export Citation Format

Share Document