scholarly journals Usage of FTIR-ATR as Non-Destructive Analysis of Selected Toxic Dyes

Author(s):  
Alica Bartošová ◽  
Lenka Blinová ◽  
Maroš Sirotiak ◽  
Anna Michalíková

Abstract The degradation of the environment which is due to the discharge of polluting wastewater from industrial sources poses a real problem in several countries. Textile industries use large volumes of water in their operations, discharging thus large volume of wastewater into the environment, most of which is untreated. The wastewater contains a variety of chemicals from various stages of process operations, including desizing, scouring, bleaching and dyeing. The main purpose of this paper is to introduce Infrared Spectrometry with Fourier transformation as a non-destructive method for study, identifation and rapid determination of selected representatives of cationic (Methylene Blue), azo (Congo Red, Eriochrome Black T) and nitroso (Naphthol Green B) dyes. In conjunction with the ATR technique, FTIR offers a reliable detection method of dyes without extraction by other dangerous substances. Spectral interpretation of dye spectra revealed valuable information about the identification and characterization of each group of dyes.

2001 ◽  
Vol 671 ◽  
Author(s):  
Michael Gostein ◽  
Paul Lefevre ◽  
Alex A. Maznev ◽  
Michael Joffe

ABSTRACTWe discuss applications of optoacoustic film thickness metrology for characterization of copper chemical-mechanical polishing (CMP). We highlight areas where the use of optoacoustics for CMP characterization provides data complementary to that obtained by other techniques because of its ability to directly measure film thickness with high spatial resolution in a rapid, non-destructive manner. Examples considered include determination of planarization length, measurement of film thickness at intermediate stages of polish, and measurement of arrays of metal lines.


2022 ◽  
Vol 93 (1) ◽  
pp. 014102
Author(s):  
R. Ananthanarayanan ◽  
N. Malathi ◽  
M. Sivaramakrishna

2006 ◽  
Vol 321-323 ◽  
pp. 1576-1579
Author(s):  
Yong Moo Cheong ◽  
Young Suk Kim

Zirconium alloys are used for many applications in nuclear components, such as the pressure tube material in a pressurized heavy water reactor, nuclear fuel cladding, etc. One of the problems during the operation of a nuclear reactor is the degradation of the zirconium alloys, which is due to an increase of the hydrogen content in the zirconium alloy. Therefore a non-destructive determination of the hydrogen concentration in zirconium alloy is one of the important issues that need to be addressed. The resonant ultrasound spectroscopy (RUS) technique is evaluated for a characterization of the hydrogen concentration in Zr-2.5Nb alloy. Referring to the terminal solid solubility for dissolution (TSSD) of Zr-2.5Nb alloy, the plot of the mechanical damping coefficient (Q-1) versus the temperature or the deviation of the resonant frequency for the temperature (df/dT) versus the temperature was correlated for the hydrogen concentration in Zr-2.5Nb alloy. It was found that the temperature at an abrupt change of the slope can be correlated with the hydrogen concentration of the Zr-2.5Nb alloy.


2020 ◽  
Vol 4 (4) ◽  
pp. 151 ◽  
Author(s):  
Alena Smirnova ◽  
Georgii Konoplev ◽  
Nikolay Mukhin ◽  
Oksana Stepanova ◽  
Ulrike Steinmann

Milk is a product that requires quality control at all stages of production: from the dairy farm, processing at the dairy plant to finished products. Milk is a complex multiphase polydisperse system, whose components not only determine the quality and price of raw milk, but also reflect the physiological state of the herd. Today’s production volumes and rates require simple, fast, cost-effective, and accurate analytical methods, and most manufacturers want to move away from methods that use reagents that increase analysis time and move to rapid analysis methods. The review presents methods for the rapid determination of the main components of milk, examines their advantages and disadvantages. Optical spectroscopy is a fast, non-destructive, precise, and reliable tool for determination of the main constituents and common adulterants in milk. While mid-infrared spectroscopy is a well-established off-line laboratory technique for the routine quality control of milk, near-infrared technologies provide relatively low-cost and robust solutions suitable for on-site and in-line applications on milking farms and dairy production facilities. Other techniques, discussed in this review, including Raman spectroscopy, atomic spectroscopy, molecular fluorescence spectroscopy, are also used for milk analysis but much less extensively. Acoustic methods are also suitable for non-destructive on-line analysis of milk. Acoustic characterization can provide information on fat content, particle size distribution of fat and proteins, changes in the biophysical properties of milk over time, the content of specific proteins and pollutants. The basic principles of ultrasonic techniques, including transmission, pulse-echo, interferometer, and microbalance approaches, are briefly described and milk parameters measured with their help, including frequency ranges and measurement accuracy, are given.


2002 ◽  
Vol 453 (2) ◽  
pp. 281-288 ◽  
Author(s):  
Inmaculada González-Martı́n ◽  
Claudio González-Pérez ◽  
Jesús Hernández-Méndez ◽  
Noelia Alvarez-Garcı́a ◽  
José-Luis Hernández Andaluz

Sign in / Sign up

Export Citation Format

Share Document