scholarly journals Optimization and simulation analysis of structure parameters of OPCM ultrasonic longitudinal wave actuating element

2019 ◽  
Vol 26 (1) ◽  
pp. 175-182
Author(s):  
Ziping Wang ◽  
Yangchun Ye ◽  
Zhujie Bao ◽  
Hao Ge

AbstractThe force-electric coupling relationship of the mechanical and electrical properties of piezoelectric composites has been the main factor in the research and development of piezoelectric composites in practical application. A novel orthotropic piezoelectric composite material (OPCM) element is studied in this paper. The properties of the piezoelectric phase and the polymer phase and the influence of the geometrical dimensions of the OPCM on the longitudinal wave drive element are analyzed from the perspective of mechanics and electric power, respectively, and the structural design is optimized. This provides a theoretical basis for the development of OPCM and of new longitudinal ultrasonic phased array actuators.

2013 ◽  
Vol 475-476 ◽  
pp. 1257-1261
Author(s):  
Guang Li ◽  
Gui Dong Luan ◽  
Hao Qu

Use relaxor ferroelectric single crystals PMNT as piezoelectric phase, epoxy resin as a non-piezoelectric phase material, take the cutting - filling method fabricated piezoelectric composite. Its structure character is achieved 1-3 type piezoelectric composites and piezoelectric crystal substrate composite again inseries by the integration, the composite horizontal and vertical bracket to be supported by piezoelectric crystal frame, it has a good impact resistance and affected by changes in ambient temperature characteristics. This composite material both has the advantages of 1-3 type composites, and has stable mechanical and thermal properties. Based on R.E.Newnhams series-parallel theory, combined with the structural characteristics of this composite, given the formula of piezoelectric composites density, piezoelectric constant, and dielectric constant. Fabricated the PMNT / epoxy composites and piezoelectric PZT / epoxy piezoelectric composite materials samples, which have the same scale, the same structural parameters. The experimental results show that, the piezoelectric composite test parameter values match theoretical calculations. The PMNT/epoxy composite has batter function than PZT/epoxy composite.


2014 ◽  
Vol 556-562 ◽  
pp. 1408-1412
Author(s):  
Zhi Qiang Zhang

In this paper, the following work is done: a new type of translational transmission device is designed; explained in detail are the operating principle, structural features, relationship of mechanism parameter and non interference conditions of the movement; the optimization analysis of transmission device is implemented on the basis of non interference conditions of the bucket movement; structural modeling and simulation analysis are carried out by utilization of Pro/e & Recurdyn; and based on virtual prototype technology, the new type of translational transmission device is verified by experiments, the data of which prove the translational transmission device reasonable and practicable. In conclusion, this paper has laid the theoretical foundation of the practical application of the translational transmission device.


2010 ◽  
Vol 123-125 ◽  
pp. 161-164
Author(s):  
Dong Yu Xu ◽  
Shi Feng Huang ◽  
Chao Ju ◽  
Zong Zhen Zhang ◽  
Xin Cheng ◽  
...  

Periodic and non-periodic 1-3 type cement based piezoelectric composites were fabricated by cut and filling technique, using P(MN)ZT ceramic as functional material and cement as matrix. The influences of periodicity of piezoelectric ceramic rods in the composites on electrical properties of all the composites were discussed. The results show that the non-periodic composites have larger dielectric factor and piezoelectric strain constant than those of the periodic composite. The impedance-frequency spectra analysis indicates that the non-periodic arrangement of ceramic rods can effectively restrict the lateral structural mode of the composite, accordingly reduces the coupling resonant between the thickness resonant mode and lateral resonant mode. The thickness electromechanical coupling coefficient of non-periodic composites is larger than that of the periodic composite. With increasing the non-periodic level of P(MN)ZT ceramic in the composites, the mechanical quality factor of the composites increases gradually. Therefore, 1-3 type cement based piezoelectric composites with different special abilities can be obtained by varying the periodic arrangement of P(MN)ZT ceramic rods in the composites.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Hui Teng ◽  
Yukun Ma ◽  
Di Teng

Studying drug relationships can provide deeper information for the construction and maintenance of biomedical databases and provide more important references for disease treatment and drug development. The research model has expanded from the previous focus on a certain drug to the systematic analysis of the pharmaceutical network formed between drugs. Network model is suitable for the study of the nonlinear relationship of the pharmaceutical relationship by modeling the data learning. Association rule mining is used to find the potential correlations between the various sets of massive data. Therefore, based on the network model, this research proposed an algorithm for drug interaction under improved association rules, which achieved accurate analysis and decision-making of drug relationship. Meanwhile, this research applied the established association rule algorithm to discuss the relationship between Chinese medicine and mental illness medicine and conducted the algorithm research and simulation analysis of the association relationship. The results showed the association rule algorithm based on the network model constructed was better than other association algorithms. It had reliability and superiority in decision-making in improving the drug-drug relationship. It also promoted the rational use of medicines and played a guiding role in pharmaceutical research. This provides scientific research personnel with research basis and research ideas for disease-related diagnosis.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1406 ◽  
Author(s):  
Yu Fan ◽  
Manuel Collet ◽  
Mohamed Ichchou ◽  
Olivier Bareille ◽  
Lin Li

A novel metrics termed the ‘wave electromechanical coupling factor’ (WEMCF) is proposed in this paper, to quantify the coupling strength between the mechanical and electric fields during the passage of a wave in piezoelectric composites. Two definitions of WEMCF are proposed, leading to a frequency formula and two energy formulas for the calculation of such a factor. The frequency formula is naturally consistent with the conventional modal electromechanical coupling factor (MEMCF) but the implementation is difficult. The energy formulas do not need the complicated wave matching required in the frequency formula, therefore are suitable for computing. We demonstrated that the WEMCF based on the energy formula is consistent with the MEMCF, provided that an appropriate indicator is chosen for the electric energy. In this way, both the theoretical closure and the computational feasibility are achieved. A numerical tool based on the wave and finite element method (WFEM) is developed to implement the energy formulas, and it allows the calculation of WEMCF for complex one-dimensional piezoelectric composites. A reduced model is proposed to accelerate the computing of the wave modes and the energies. The analytical findings and the reduced model are numerically validated against two piezoelectric composites with different complexity. Eventually an application is given, concerning the use of the shunted piezoelectric composite for vibration isolation. A strong correlation among the WEMCF, the geometric parameters and the energy transmission loss are observed. These results confirm that the proposed WEMCF captures the physics of the electromechanical coupling phenomenon associated with the guided waves, and can be used to understand, evaluate and design the piezoelectric composites for a variety of applications.


Piezoelectric fibrous composites of two, three and four phases are considered. The phase boundaries are cylindrical but otherwise the microgeometry is totally arbitrary. The constituents are transversely isotropic, and exhibit pyroelectricity. Exact relations are derived between the local fields arising under a uniform electromechanical loading and a uniform temperature change in the piezoelectric composite. For given overall material symmetry, exact connections are obtained among the effective elastic, piezoelectric and dielectric constants of two- and three- phase systems. It is also shown that the effective thermal stress and pyroelectric coefficients can be expressed in terms of the effective elastic, piezoelectric, dielectric constants and constituent properties in two-, three- and four-phase composites.


2009 ◽  
Vol 76 (3) ◽  
Author(s):  
M. C. Ray ◽  
R. C. Batra

We propose a new hybrid piezoelectric composite comprised of armchair single-walled carbon nanotubes and piezoelectric fibers as reinforcements embedded in a conventional polymer matrix. Effective piezoelectric and elastic properties of this composite have been determined by a micromechanical analysis. Values of the effective piezoelectric coefficient e31 of this composite that accounts for the in-plane actuation and of effective elastic properties are found to be significantly higher than those of the existing 1–3 piezoelectric composites without reinforced with carbon nanotubes.


Sign in / Sign up

Export Citation Format

Share Document