Effects of Rituximab on JAK-STAT and NF-κB signaling pathways in acute lymphoblastic leukemia and chronic lymphocytic leukemia

2019 ◽  
Vol 44 (4) ◽  
pp. 499-509 ◽  
Author(s):  
Ayşegül Dalmızrak ◽  
Nur Selvi Günel ◽  
Burçin Tezcanlı Kaymaz ◽  
Fahri Şahin ◽  
Güray Saydam ◽  
...  

AbstractObjectivesRituximab is a monoclonal antibody that targets the B-lymphocyte surface antigen CD20. It is used in the treatment of some diseases including B-cell chronic lymphocytic leukemia (B-CLL). There are a lot of data regarding effect of Rituximab on lymphoma cells. But, there is no satisfactory information about the effect of Rituximab on the signaling pathways in leukemia cells. In this study, it was aimed to understand the effect of Rituximab on JAK-STAT and NF-κB signaling pathways in B-cell acute lymphoblastic leukemia (B-ALL) and B-CLL.Material and methodsApoptotic effect of Rituximab in the TANOUE (B-ALL) and EHEB (B-CLL) cell lines were evaluated by using the Annexin V method. mRNA expression levels of STAT3 and RelA were analysed by quantitative RT-PCR (Q-PCR). Alterations in STAT3 and RelA protein expressions were detected by using a chromogenic alkaline phosphatase assay after Western Blotting.ResultsRituximab had no apoptotic effect on both cell lines. Complement-mediated cytotoxicity was only detected in EHEB cells. mRNA and protein expressions of STAT3 and RelA genes were decreased following Rituximab treatment.ConclusionOur preliminary results suggest that the use of Rituximab might be effective in B-ALL though both signaling pathways.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3534-3534 ◽  
Author(s):  
Nathalie Y Rosin ◽  
Stefan Koehrer ◽  
Ekaterina Kim ◽  
Susan O'Brien ◽  
William G. Wierda ◽  
...  

Abstract Abstract 3534 Acute lymphoblastic leukemia (ALL) is a highly heterogeneous disease. B-cell acute lymphoblastic leukemia (B-ALL) is characterized by uncontrolled proliferation of immature lymphoid blasts with suppression of normal hematopoiesis. Phosphoinositide 3-kinases (PI3K) transmit activation signals from diverse transmembrane receptors, leading to generation of phosphatidylinositol- 3,4,5-trisphosphate (PIP3) which promotes proliferation, differentiation, migration, and survival in lymphocytes and various other cell types. A knockout mouse model of the PI3K isoform p110δ demonstrates a unique role of p110δ (PI3Kδ) in B cell receptor (BCR) signaling. This is corroborated by clinical efficacy of the PI3Kδ inhibitor GS-1101 in mature B cell malignancies, especially in chronic lymphocytic leukemia (CLL). In contrast to mature B cell malignancies, expression and function of PI3Kδ in B-ALL has not been well characterized. We therefore analyzed PI3Kδ expression and effects of the PI3Kδ inhibitor GS-1101 in B-ALL. To screen efficacy of GS-1101 in B-ALL subsets, we performed viability and proliferation assays, using a panel of B-ALL cell lines, derived from different B-cell development stages (Pro-B: REH, RS4;11, Nalm-20, Nalm-21, TOM-1; Pre-B: Nalm-6, Kasumi-2, KOPN-8, SMS-SB, RCH-ACV, 697; Mature: Tanoue, Ball-1 unknown: CCRF-SB). A key downstream effector of PI3K is the serine/threonine kinase Akt, whose phosphorylation is used as a common readout of PI3K activation status. Western Blot analysis of the 15 cell lines showed almost identical levels of phospho-Akt (Ser473) in all tested cell lines, suggesting constitutive PI3K activity. To investigate the ability of GS-1101 to inhibit B-ALL cell proliferation, we performed cell growth experiments. Among the pre-B cell lines 4 of 6 showed a marked decrease in proliferation, 2 other pre-B cell lines showed a minor decrease. In contrast, none of the pro-B or mature B-ALL cell lines were affected by GS-1101. To explore the effects of GS-1101 on cell cycle of B-ALL cells, cell lines were treated with GS-1101 at concentrations ranging from 0.5μM to 5μM. In accordance with the cell growth experiments, G1 phase arrest and reduced numbers of S phase cells were detected in pre-B cell lines after GS-1101 treatment, but not in the pro-B or mature B cell lines. Next, we examined GS-1101 effects on metabolism of B-ALL cells via XTT (sodium 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium inner salt) staining. Cell lines were treated with GS-1101 concentrations between 0.1μM and 5μM for 3 days prior to XTT measurement. Pre-B cells showed a significant (p-value <0.0001) decrease in normalized absorbance compared to the control (without treatment) indicating a decrease in cellular viability. Finally, preliminary co-culture experiments of primary B-ALL samples and KUSA-H1 bone marrow stromal cells revealed significantly reduced B-ALL cell viability after GS-1101 treatment, signifying that GS-1101 can overcome microenviromental-mediated B-ALL cell protection; this is similar to that in other B cell malignances. In summary, these experiments demonstrate that GS-1101 inhibits growth, cell cycle progression and metabolic activity of pre-B ALL cells. Validation of these data with primary patient samples is ongoing. Disclosures: Lannutti: Gilead Sciences Inc: Employment.


Blood ◽  
2008 ◽  
Vol 111 (1) ◽  
pp. 275-284 ◽  
Author(s):  
Qing Liu ◽  
Xiaobin Zhao ◽  
Frank Frissora ◽  
Yihui Ma ◽  
Ramasamy Santhanam ◽  
...  

FTY720 is an immunosuppressant developed to prevent organ transplant rejection. Recent studies indicate an additional role for FTY720 in inducing cell apoptosis. We demonstrate here that FTY720 mediates toxic effects in cell lines representing different B-cell malignancies and primary B cells from patients with chronic lymphocytic leukemia (CLL). In contrast to previous reports in T-cell lines, FTY720-induced toxicity in the Raji cell line and primary CLL B cells is independent of activation of caspases or poly(ADP-ribose) polymerase processing. Further, pancaspase inhibitor Z-VAD-fmk failed to rescue these cells from apoptosis mediated by FTY720. FTY720 induced down-regulation of Mcl-1 but not Bcl-2 in CLL B cells. Overexpression of Bcl-2 failed to protect transformed B cells from FTY720-induced apoptosis, suggesting a Bcl-2–independent mechanism. Interestingly, FTY720 induced protein phosphatase 2a (PP2a) activation and downstream dephosphorylation of ERK1/2, whereas okadaic acid at concentrations that inhibited the FTY720-induced PP2a activation also resulted in inhibition of FTY720-mediated apoptosis and restoration of baseline ERK1/2 phosphorylation in primary CLL cells, indicating a role for PP2a activation in FTY720-induced cytotoxicity. Further, FTY720 treatment resulted in significant prolonged survival in a xenograft severe combined immunodeficiency (SCID) mouse model of disseminated B-cell lymphoma/leukemia. These results provide the first evidence for the potential use of FTY720 as a therapeutic agent in a variety of B-cell malignancies, including CLL.


Blood ◽  
2017 ◽  
Vol 130 (21) ◽  
pp. 2317-2325 ◽  
Author(s):  
Karen Thudium Mueller ◽  
Shannon L. Maude ◽  
David L. Porter ◽  
Noelle Frey ◽  
Patricia Wood ◽  
...  

Key Points Tisagenlecleucel (CTL019) has demonstrated clinical efficacy in relapsed/refractory B-cell ALL and CLL. The cellular kinetic profile of tisagenlecleucel was consistent across the 2 diseases, with higher exposure in responding vs nonresponding patients.


Blood ◽  
2020 ◽  
Author(s):  
Moritz Fürstenau ◽  
Anna Maria Fink ◽  
Anke Schilhabel ◽  
Jonathan Weiss ◽  
Sandra Robrecht ◽  
...  

The placebo controlled CLLM1 trial evaluated the efficacy of lenalidomide maintenance treatment in patients with high-risk chronic lymphocytic leukemia (CLL) in first remission after chemoimmunotherapy (CIT). Upon observation of three cases with acute lymphoblastic leukemia (ALL) in overall 56 lenalidomide treated patients (5.4%), the study treatment was prematurely stopped. Using next generation sequencing of B cell and T cell receptor (TR) rearrangements, we here report common clonal B cell ancestry between CLL and ALL in one of those three patients, in whom both diseases shared the same VDJ- as well as crosslineage TR rearrangements. Chromosomal/mutation analyses indicated that in this patient the ALL developed from a common B cell precursor which lacks genomic lesions acquired in the CLL subclone, but shares a BIRC3 frameshift deletion (p.L421fs*). In two cases we found independent IGH rearrangements indicating de novo ALL development from a different B cell clone. A retrospective cohort analysis of &gt;1600 CLL patients treated with first-line CIT in previously reported phase 2-3 studies of the German CLL study group, yielded a significantly lower cumulative incidence of ALL at 12.6 cases/100,000 patient years, compared to 1345.5 cases/100,000 patient-years observed in the lenalidomide arm of the CLLM1 study. Given our results and increasing knowledge on the biological effects of lenalidomide in bone marrow precursor cells, we discuss the potential involvement of lenalidomide in the pathogenesis of ALL in CLL patients.


Blood ◽  
2009 ◽  
Vol 113 (19) ◽  
pp. 4656-4666 ◽  
Author(s):  
David M. Lucas ◽  
Ryan B. Edwards ◽  
Gerard Lozanski ◽  
Derek A. West ◽  
Jungook D. Shin ◽  
...  

Abstract Therapeutic options for advanced B-cell acute lymphoblastic leukemia (ALL) and chronic lymphocytic leukemia (CLL) are limited. Available treatments can also deplete T lymphocytes, leaving patients at risk of life-threatening infections. In the National Cancer Institute cell line screen, the structurally unique natural product silvestrol produces an unusual pattern of cytotoxicity that suggests activity in leukemia and selectivity for B cells. We investigated silvestrol efficacy using primary human B-leukemia cells, established B-leukemia cell lines, and animal models. In CLL cells, silvestrol LC50 (concentration lethal to 50%) is 6.9 nM at 72 hours. At this concentration, there is no difference in sensitivity of cells from patients with or without the del(17p13.1) abnormality. In isolated cells and whole blood, silvestrol is more cytotoxic toward B cells than T cells. Silvestrol causes early reduction in Mcl-1 expression due to translational inhibition with subsequent mitochondrial damage, as evidenced by reactive oxygen species generation and membrane depolarization. In vivo, silvestrol causes significant B-cell reduction in Eμ-Tcl-1 transgenic mice and significantly extends survival of 697 xenograft severe combined immunodeficient (SCID) mice without discernible toxicity. These data indicate silvestrol has efficacy against B cells in vitro and in vivo and identify translational inhibition as a potential therapeutic target in B-cell leukemias.


Blood ◽  
2018 ◽  
Vol 131 (11) ◽  
pp. 1258-1261 ◽  
Author(s):  
Seongseok Yun ◽  
Ling Zhang ◽  
Manish R. Patel ◽  
Todd C. Knepper ◽  
Julio C. Chavez ◽  
...  

2020 ◽  
Author(s):  
Travers Ching ◽  
Megan E Duncan ◽  
Tera Newman-Eerkes ◽  
Mollie M E McWhorter ◽  
Jeffrey M Tracy ◽  
...  

Abstract Background: The clonoSEQ® Assay (Adaptive Biotechnologies Corporation, Seattle, USA) identifies and tracks unique disease-associated immunoglobulin (Ig) sequences by next-generation sequencing of IgH, IgK, and IgL rearrangements and IgH-BCL1/2 translocations in malignant B cells. Here, we describe studies to validate the analytical performance of the assay using patient samples and cell lines.Methods: Sensitivity and specificity were established by defining the limit of detection (LoD), limit of quantitation (LoQ) and limit of blank (LoB) in genomic DNA (gDNA) from 66 patients with multiple myeloma (MM), acute lymphoblastic leukemia (ALL), or chronic lymphocytic leukemia (CLL), and three cell lines. Healthy donor gDNA was used as a diluent to contrive test samples with specific DNA masses and malignant-cell frequencies. Precision was validated using a range of samples contrived from patient gDNA, healthy donor gDNA, and 9 cell lines to generate numerous measurable residual disease (MRD) frequencies spanning clinically relevant thresholds. Linearity was determined using samples contrived from cell line gDNA spiked into healthy gDNA to generate 11 MRD frequencies for each DNA input, then confirmed using clinical samples. Quantitation accuracy was assessed by (1) comparing clonoSEQ and multiparametric flow cytometry (mpFC) measures of ALL and MM cell lines diluted in healthy mononuclear cells, and (2) analyzing precision study data for quantitation bias between MRD results from clonoSEQ measurements of diluted gDNA and those expected from mpFC of original, undiluted samples. Repeatability of nucleotide base calls was assessed via the assay’s ability to recover malignant clonotype sequences across several replicates, process features, and MRD levels.Results: LoD and LoQ were estimated at 1.903 cells and 2.390 malignant cells, respectively. LoB was zero in healthy donor gDNA. Precision ranged from 18% CV at higher DNA inputs to 68% CV near the LoD. Variance component analysis showed MRD results were robust, with expected laboratory process variations contributing ≤3% CV. Linearity and accuracy were demonstrated for each disease across orders of magnitude of clonal frequencies. Nucleotide sequence error rates were extremely low.Conclusions: These studies validate the analytical performance of the clonoSEQ Assay, and demonstrate its potential as a highly sensitive diagnostic tool for selected lymphoid malignancies.


Sign in / Sign up

Export Citation Format

Share Document