Use Deflected Trailing Edge to Improve the Aerodynamic Performance and Develop Low Solidity LPT Cascade

2017 ◽  
Vol 34 (3) ◽  
Author(s):  
Li Chao ◽  
Yan Peigang ◽  
Wang Xiangfeng ◽  
Han Wanjin ◽  
Wang Qingchao

AbstractThis paper investigates the feasibility of improving the aerodynamic performance of low pressure turbine (LPT) blade cascades and developing low solidity LPT blade cascades through deflected trailing edge. A deflected trailing edge improved aerodynamic performance of both LPT blade cascades and low solidity LPT blade cascades. For standard solidity LPT cascades, deflecting the trailing edge can decrease the energy loss coefficient by 20.61 % for a Reynolds number (Re) of 25,000 and freestream turbulence intensities (FSTI) of 1 %. For a low solidity LPT cascade, aerodynamic performance was also improved by deflecting the trailing edge. Solidity of the LPT cascade can be reduced by 12.5 % for blades with a deflected trailing edge without a drop in efficiency. Here, the flow control mechanism surrounding a deflected trailing edge was also revealed.

2004 ◽  
Vol 128 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three-dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


Author(s):  
Muhammad Aqib Chishty ◽  
Hossein Raza Hamdani ◽  
Khalid Parvez ◽  
Muhammad Nafees Mumtaz Qadri

Active and passive techniques have been used in the past, to control flow separation. Numerous studies were published on controlling and delaying the flow separation on low pressure turbine. In this study, a single dimple (i.e. passive device) is engraved on the suction side of LP turbine cascade T106A. The main aim of this research is to find out the optimum parameters of dimple i.e. diameter (D) and depth (h) which can produce strong enough vortex that can control the flow either in transition or fully turbulent phase. Furthermore, this optimal dimple is engraved to suppress the boundary layer separation at different Reynolds number (based on the chord length and inlet velocity). The dimple of different depth and diameter are used to find the optimal depth to diameter ratio. Computational results show that the optimal ratio of depth to diameter (h/D) for dimple is 0.0845 and depth to grid boundary layer (h/δ) is 0.5152. This optimized dimple efficiently reduces the normalized loss coefficient and it is found that the negative values of shear stresses found in uncontrolled case are being removed by the dimple. After that, dimple of optimized parameters are used to suppress the laminar separation bubble at different Re∼25000, 50000 and 91000. It was noticed that the dimple did not reduce the losses at Re∼25000. But at Re∼50000, it produced such a strong vortex that reduced the normalized loss coefficient to 25%, while 5% losses were reduced at Re∼91000. It can be concluded that the optimized dimple effectively controlled flow separation and reduced normalized loss coefficient from Re 25000 to 91000. As the losses are decreased, this will increase the low pressure turbine efficiency and reduce its fuel consumption.


Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-k1-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
M. Eric Lyall ◽  
Paul I. King ◽  
Rolf Sondergaard ◽  
John P. Clark ◽  
Mark W. McQuilling

This paper presents an experimental and computational study of the midspan low Reynolds number loss behavior for two highly loaded low pressure turbine airfoils, designated L2F and L2A, which are forward and aft loaded, respectively. Both airfoils were designed with incompressible Zweifel loading coefficients of 1.59. Computational predictions are provided using two codes, Fluent (with k-kl-ω model) and AFRL’s Turbine Design and Analysis System (TDAAS), each with a different eddy-viscosity RANS based turbulence model with transition capability. Experiments were conducted in a low speed wind tunnel to provide transition models for computational comparisons. The Reynolds number range based on axial chord and inlet velocity was 20,000 < Re < 100,000 with an inlet turbulence intensity of 3.1%. Predictions using TDAAS agreed well with the measured Reynolds lapse rate. Computations using Fluent however, predicted stall to occur at significantly higher Reynolds numbers as compared to experiment. Based on triple sensor hot-film measurements, Fluent’s premature stall behavior is likely the result of the eddy-viscosity hypothesis inadequately capturing anisotropic freestream turbulence effects. Furthermore, rapid distortion theory is considered as a possible analytical tool for studying freestream turbulence that influences transition near the suction surface of LPT airfoils. Comparisons with triple sensor hot-film measurements indicate that the technique is promising but more research is required to confirm its utility.


Author(s):  
Ralph J. Volino ◽  
Douglas G. Bohl

A correlation for separated flow transition has been developed for boundary layers subject to initial acceleration followed by an unfavorable pressure gradient. The correlation is based on the measured growth of small disturbances in the pre-transitional boundary layer. These disturbances were identified and quantified through spectral analysis of the wall normal component of velocity. Cases typical of low pressure turbine airfoil conditions, with Reynolds numbers (Re) ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered at low (0.5%) and high (8.7% inlet) freestream turbulence levels. In some cases, two-dimensional rectangular bars were placed at the beginning of the adverse pressure gradient region as passive flow control devices. The dimensionless magnitude of the initial disturbance which begins to grow at the suction peak depends on the freestream turbulence level and the size of any bar applied to the surface. The growth rate depends on the Reynolds number. When the pre-transitional disturbances grow to a sufficient magnitude, transition begins. The new correlation is based on the physics observed in the turbulence spectra, but allows transition prediction using only the Reynolds number, freestream turbulence level and bar height. The correlation has been checked against experimental data from the literature, and allows transition location prediction to within the uncertainty of the experimental measurements. The correlation represents an improvement over previous correlations which accounted for Reynolds number or freestream turbulence effects, but not both.


Author(s):  
Christopher G. Murawski ◽  
Rolf Sondergaard ◽  
Richard B. Rivir ◽  
Kambiz Vafai ◽  
Terrence W. Simon ◽  
...  

Low pressure turbines in aircraft experience large changes in flow Reynolds number as the gas turbine engine operates from takeoff to high altitude cruise. Low pressure turbine blades are also subject to regions of strong acceleration and diffusion. These changes in Reynolds number, strong acceleration, as well as elevated levels of turbulence can result in unsteady separation and transition zones on the surface of the blade. An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. The intent was to assess the effects of changes in Reynolds number, and freestream turbulence intensity. Flow Reynolds numbers, based on exit velocity and suction surface length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a slightly rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number resulted in a shrinkage of the separation region on the suction surface. Increasing both flow Reynolds numbers and freestream turbulence intensity compounded these effects such that at a Reynolds number of 300,000 and a freestream turbulence intensity of 8.1%, the separation zone was almost nonexistent. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. The width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. Numerical simulations were performed in support of experimental results. The numerical results compare well qualitatively with the low freestream turbulence experimental cases.


Author(s):  
Mounir Ibrahim ◽  
Olga Kartuzova ◽  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. Three different CFD URANS (unsteady Reynolds averaged Navier-Stokes) models were utilized in this study (using Fluent CFD Code), the k-ω shear stress transport model, the ν2-fk-ε model, and the 4 equation Transition model of Menter. At Re = 25,000, the Transition model seems to perform the best. At Re = 100,000 the Transition model seems to perform the best also, although it under-predicts the pressure coefficient downstream of the suction peak. At Re = 300,000 all models perform very similar with each other. The Transition model showed a small bump in the pressure coefficient downstream from the suction peak indicating the presence of a small bubble at that location.


Sign in / Sign up

Export Citation Format

Share Document