scholarly journals Non-Renewable Energy and Macroeconomic Efficiency of Seven Major Oil Producing Economies in Africa

2016 ◽  
Vol 19 (1) ◽  
pp. 59-74 ◽  
Author(s):  
Olabanji Benjamin Awodumi ◽  
Adebowale Musefiu Adeleke

Abstract This study adopted two-stage DEA to estimate the technical efficiency scores and assess the impact of the two most important components of fossil fuel associated with oil production on macroeconomic efficiency of Seven oil producing African countries during 2005-2012. Our results showed that increasing the consumption of natural gas would improve technical efficiency. Furthermore, increasing the share of fossil fuel in total energy consumption has negative effect on the efficiency of the economies of the top African oil producers. Also, we found that increasing the consumption of primary energy improves efficiency in these economies. We therefore, recommend that governments and other stakeholders in the energy industry should adopt inclusive strategies that will promote the use of natural gas in the short term. However, in the long-run, efforts should be geared towards increasing the use of primary energy, thereby reducing the percentage share of fossil fuel in total energy consumption.

Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Luciana Debs ◽  
Jamie Metzinger

The present research analyzes the impact of nine factors related to household demographics, building equipment, and building characteristics towards a home’s total energy consumption while controlling for climate. To do this, we have surveyed single-family owned houses from the 2015 Residential Energy Consumption Survey (RECS) dataset and controlled the analysis by Building America climate zones. Our findings are based on descriptive statistics and multiple regression models, and show that for a median-sized home in three of the five climate zones, heating equipment is still the main contributor to a household’s total energy consumed, followed by home size. Social-economic factors and building age were found relevant for some regions, but often contributed less than size and heating equipment towards total energy consumption. Water heater and education were not found to be statistically relevant in any of the regions. Finally, solar power was only found to be a significant factor in one of the regions, positively contributing to a home’s total energy consumed. These findings are helpful for policymakers to evaluate the specificities of climate regions in their jurisdiction, especially guiding homeowners towards more energy-efficient heating equipment and home configurations, such as reduced size.


Author(s):  
Ibrahim Nandom Yakubu ◽  
Ayhan Kapusuzoglu ◽  
Nildag Basak Ceylan

This study investigates the influence of economic freedom on energy consumption and bank performance in Ghana over the period 2000-2017. Specifically, the authors examine the effect of the various components of economic freedom on total energy usage, fossil fuel consumption, and bank performance. The study applies the fully modified ordinary least squares (FMOLS) method to determine the long-run influence of economic freedom indicators on energy consumption and bank performance. The results show that aside from business freedom, all the other sub-economic freedom measures significantly drive total energy consumption. The authors reveal that investment and fiscal freedom significantly influence fossil fuel consumption. The findings also establish that financial, investment, and fiscal freedom indices exert a significant effect on bank performance. These results hold regardless of the measure of bank performance. In light of the findings, the authors discuss relevant policy implications.


2021 ◽  
Vol 65 (1) ◽  
pp. 113-118
Author(s):  
Hamdi Sunnetci ◽  
Deniz Yilmaz

In these days, people spend 87% of their time indoors. Therefore, buildings are responsible for 36% of the total energy consumption and 40% of the CO2 emissions in the world. Besides, energy expenditures can be reduced, especially through improvements in public buildings used by many people. In this study, an annual energy consumption was conducted for an Olympic ice-skating rink and sports complex in Istanbul with a capacity of 900 spectators, was analyzed. Annual energy consumption of the building was 2 915 032 kWh electrical energy and 157 944 m3 natural gas. It was foreseen that 40 000kWh energy savings can be achieved annually with the evaporative pre-cooling system.


2018 ◽  
Vol 28 (2) ◽  
pp. 195-216 ◽  
Author(s):  
Yuekuan Zhou ◽  
Chuck Wah Yu

A new ventilated Trombe wall (VTW) constituted with double Phase Change Material (PCM) wallboards (PCMs-VTW) has been developed. The year-round thermal performance of the system was evaluated via an experimentally validated model. The impact of the transition temperature of PCMs and air change rate on cooling and heating load were determined. Also, the total energy and the electric energy consumption of the fan were evaluated. The new PCMs-VTW can contribute to a reduction in the cooling load (14.8%) and heating load (12.7%) when fusion temperatures of PCMs in exterior and interior PCM wallboards were 26°C and 22°C, respectively. As a result, the total energy consumption was reduced, relative to the use of a shading device, by 5.83 kWh in summer and 23.54 kWh in winter. The proposed system is beneficial to indoor thermal comfort during summer and winter. The test room fitted with the PCMs-VTW has an average predicted mean vote (PMV) of 0.97 and a predicted percentage dissatisfied (PPD) of 12.5% in summer; and a PMV of –0.32 and 9.6% PPD in winter. By contrast, the test room fitted with a split-type air conditioner has a PMV of 2.71 and a PPD of 23.9% in summer and a PMV of –1.71 and 29.8% PPD in winter.


2020 ◽  
Vol 28 (4) ◽  
pp. 29-37
Author(s):  
Anna Życzyńska ◽  
Zbigniew Suchorab ◽  
Grzegorz Dyś ◽  
Jakub Čurpek ◽  
Miroslav Čekon

AbstractThe paper presents the structure and indices of the annual energy consumption in educational buildings subject to comprehensive thermal retrofitting. Seven buildings were analyzed; the energy consumption for heating and ventilation, hot water preparation, and built-in lighting was analyzed in each of them and, in the case of one structure, also cooling. The indices of the usable, final, and primary energy consumption were analyzed. The values calculated were compared to the requirements of the energy standards in force in Poland. The percentage shares of the above-mentioned energy demands of each of the buildings investigated are given in the total energy performance. Within the investigation, we evaluated the shares of the particular building services in the total energy consumption and determined that even after the thermal retrofitting, the energy demands for heating together with lighting are still the most significant compared to the other demands.


2018 ◽  
Vol 12 (2) ◽  
pp. 1
Author(s):  
Lubing Xie ◽  
Xiaoming Rui ◽  
Shuai Li ◽  
Xiaozhao Fan ◽  
Ruijing Shi ◽  
...  

China is facing a number of challenges, such as environmental pollution, energy security, and slowing down of economic growth. China's total energy consumption has been leading the worldwide consumption for several years. China's annual primary energy consumption accounts for more than 90% of total energy consumption, and the country's utilization of wind energy, solar energy, biomass energy, and other new form of energy remains very low. This research has adopted a strength, weakness, opportunity, and threat (SWOT) analysis approach to examine the internal and external factors that affect the competitiveness of the energy industry in China. An extensive and critical review of a wide range of literature was conducted, including academic papers, industry reports, statistical data, relevant regulations, and policy documents. Eighteen factors were identified from the literature review. These factors form part of an integrated framework that provides a useful tool for policy makers and the industry to gain a better understanding of the factors that affect the sustainable development of the Chinese energy industry. The results also provide a useful reference for foreign firms that intend to explore the Chinese energy industry market.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Rui Zhang ◽  
Mingxu Long ◽  
Jianlong Zheng

Two alternative techniques, the lime stabilization technique (LST) and the geogrid reinforcement technique (GRT), are both useful to stabilize expansive soil slopes, but their impacts on the environment need be further evaluated. Based on a case study, two techniques as well as their construction processes were introduced. The energy consumption and carbon dioxide (CO2) emissions were investigated by the life cycle assessment (LCA). The sensitivity analyses were carried out, including the lime content for LST, the reinforcement spacing for GRT, the embankment height, delivery distance, and treatment width for both techniques. From the LCA results, with the GRT, the energy consumption and CO2 emissions can be reduced by 7.52% and 57.09%, respectively. The main sources of two techniques are raw material production, soil transportation, and paving stage while the CO2 emissions of lime production are about 11.68 times of those of geogrid production. From the sensitivity analysis results, as the lime content of LST increases by 1%, the total energy consumption and CO2 emissions increase by 8.27% and 13.16%, respectively; as the reinforcement spacing of GRT increases by 0.05 m, the total energy consumption and CO2 emissions increase by 1.63% and 0.69%, respectively; as the embankment height increases by 1 m, the increase rates of energy consumption and CO2 emissions of LST are 1.68 and 1.61 times of those of GRT, respectively. In this project, when the embankment height is less than 10 m, the geogrid technique has the advantages of energy-saving and emission-reduction. It was found that the GRT is not sensitive to the change of delivery distance and treatment width and significantly reduces the environmental impacts, especially in reducing the impact of global warming.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Sign in / Sign up

Export Citation Format

Share Document