Self-diffusion in Molten Silver Iodide

1971 ◽  
Vol 26 (2) ◽  
pp. 329-330 ◽  
Author(s):  
Dan Andréasson ◽  
Anders Behn ◽  
Carl-Axel Sjöblom

Abstract The self-diffusion coefficients of the cation (D+) and of the anion (D-) have been measured in molten silver iodide be­ tween 580 °C and 620 °C with the porous-frit technique. At 610 °C it is found that D+ = D-=5A × 10-5 cm2 s-1. At the melting point (556 °C) D+ melt (4.4 × 10-5 cm2 s-1) is very close to D+ solid (4.3 × 10-5 cm2 s-1) . The Klemm friction coefficients do not indicate the existence of complex entities. D+ and D- calculated according to the Nernst-Einstein equation agree with observed data within 20%.

2010 ◽  
Vol 297-301 ◽  
pp. 1371-1376
Author(s):  
Dezső L. Beke

There are a number of well-known empirical relations for diffusion in solids. For example the proportionality between the self-diffusion activation energy and melting point or between the entropy of the diffusion and the ratio of activation energy and the melting point (Zener rule) are perhaps the best known ‘rules of thumb’. We have shown earlier in our Laboratory, that these relations are direct consequences of the similarity of interatomic potentials seen by ions in solids. On the basis of this, similar relations were extended for impurity and self diffusion in binary solid alloys. In this paper, results for binary liquid mixtures will be reviewed. First a minimum derivation of the temperature dependence of the self-diffusion coefficient, D, is presented (minimum derivation in the sense that it states only that the reduced (dimensionless) D should be a universal function of the reduced temperature), using the similarity of interatomic potentials and dimensional analysis. Then the extension of this relation for determination of the pressure and composition dependence of the self-diffusion coefficients is described using pressure and composition dependent scaling parameters (melting point, atomic volume and mass). The obtained universal form (valid for binary liquid alloys) is very useful for the estimation of the temperature, composition and pressure dependence of the self-diffusion coefficients. Finally, the relation for the ratio of the impurity and self-diffusion coefficients is derived.


Author(s):  
Victor P. Arkhipov ◽  
Natalia A. Kuzina ◽  
Andrei Filippov

AbstractAggregation numbers were calculated based on measurements of the self-diffusion coefficients, the effective hydrodynamic radii of micelles and aggregates of oxyethylated alkylphenols in aqueous solutions. On the assumption that the radii of spherical micelles are equal to the lengths of fully extended neonol molecules, the limiting values of aggregation numbers corresponding to spherically shaped neonol micelles were calculated. The concentration and temperature ranges under which spherical micelles of neonols are formed were determined.


1974 ◽  
Vol 14 (6) ◽  
pp. 915-918
Author(s):  
A. M. Sazonov ◽  
V. M. Olevskii ◽  
A. B. Porai-Koshits ◽  
V. N. Skobolev ◽  
G. A. Shmuilovich

2012 ◽  
Vol 1 (6) ◽  
pp. 334-346 ◽  
Author(s):  
Rafik Besbes ◽  
Noureddine Ouerfelli ◽  
Manef Abderabba ◽  
Patric Lindqvist-Reis ◽  
Habib Latrous

1986 ◽  
Vol 41 (7) ◽  
pp. 939-943 ◽  
Author(s):  
E. Hawlicka

The self-diffusion coefficients of Na+, Cl- and I- in methanol-water solutions at 35 ± 0.01 °C have been measured in their dependence on the salt molarity in the range 1 · 10-4- 1 · 10-2 mol dm -3. The ionic self-diffusion coefficients in infinitely diluted solutions have been computed. The influence of the solvent composition on the solvation of the ions is discussed. A preferential hydration of Na+, Cl- and I- ions in water-methanol mixtures has been found.


1994 ◽  
Vol 49 (3-4) ◽  
pp. 258-264 ◽  
Author(s):  
D. Girlich ◽  
H.-D. Lüdemann ◽  
C. Buttersack ◽  
K. Buchholz

The self diffusion coefficients D of the water molecules and of sucrose have been determined by the pulsed field gradient NMR technique over a wide range of temperatures and concentrations (cmax: 70% w/w suc.). All temperature dependencies can be fitted to a Vogel- Tammann-Fulcher equation. The isothermic concentration dependence of D for the sucrose is given by a simple exponential concentration dependence


1992 ◽  
Vol 47 (10) ◽  
pp. 1047-1050 ◽  
Author(s):  
C. Herdlicka ◽  
J. Richter ◽  
M. D. Zeidler

AbstractSelf-diffusion coefficients of 7Li+ ions have been measured in molten LiNO3 with several compositions of 6Li+ and 7Li+ over a temperature range from 537 to 615 K. The NMR spin-echo method with pulsed field gradients was applied. It was found that the self-diffusion coefficient depends on the isotopic composition and shows a maximum at equimolar ratio. At temperatures above 600 K this behaviour disappears.


2008 ◽  
Vol 139 ◽  
pp. 101-106 ◽  
Author(s):  
Byoung Min Lee ◽  
Shinji Munetoh ◽  
Teruaki Motooka ◽  
Yeo Wan Yun ◽  
Kyu Mann Lee

The structural properties of SiO2 liquid during cooling have been investigated by molecular dynamics simulations. The interatomic forces acting on the particles are calculated by the modified Tersoff potential parameters. The glass transition temperature and structural properties of the resulting SiO2 system at various temperatures have been investigated. The fivefold coordinations of Si and threefold coordinations of O atoms were observed, and the coordination defects of system decrease with decreasing temperature up to 17 % at 300 K. The self-diffusion coefficients for Si and O atoms drop to almost zero below 3000 K. The structures were distorted at high temperatures, but very stable atomic network persisted up to high temperature in the liquid state.


Sign in / Sign up

Export Citation Format

Share Document