Zur Frage Supraleitung in σ-Phase Nb-Al / Superconductivity and σ-Phase Nb — Al

1973 ◽  
Vol 28 (3-4) ◽  
pp. 472-474 ◽  
Author(s):  
A. Müller

AbstractThe preparation and the alloy structure of Nb - Al samples containing σ.-phase are described. Using single-phase material it is shown that the o-phase Nb - Al, independent of composition and heat treatment, is not superconducting down to 1.3 K.

2020 ◽  
Vol 92 (1) ◽  
pp. 10901
Author(s):  
Saloua El Asri ◽  
Hamid Ahamdane ◽  
Lahoucine Hajji ◽  
Mohamed El Hadri ◽  
Moulay Ahmed El Idrissi Raghni ◽  
...  

Forsterite single phase powder Mg2SiO4 was synthesized by sol–gel method alongside with heat treatment, using two different cation alkaline salts MCl as mineralizers (M = Na, K) with various mass percentages (2.5, 5, 7.5, and 10 wt.%). In this work, we report on the effect of the cation type and the added amount of used mineralizer on microstructure and electrical conductivity of Mg2SiO4. The formation of forsterite started at 680–740  °C and at 630–700  °C with KCl and NaCl respectively, as shown by TG-DTA and confirmed by XRD. Furthermore, the Fourier transform infrared (FTIR) transmission spectra indicated bands corresponding to vibrations of forsterite structure. The morphology and elemental composition of sintered ceramics were examined by SEM-EDX analyses, while their densities, which were measured by Archimedes method, increased with addition of both alkaline salts. The electrical measurements were performed by Complex Impedance Spectroscopy. The results showed that electrical conductivity increased with the addition of both mineralizers, which was higher for samples prepared with NaCl than those prepared with KCl.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Tao Zhang ◽  
Yue-Qiao Hu ◽  
Qian-Wen Li ◽  
Wei-Peng Chen ◽  
Yan-Zhen Zheng

A rare hybrid of a 3D Sn–Se type framework and a ruthenium(ii) photosensitizer has been synthesized, and exhibits visible light photocurrent response.


2014 ◽  
Vol 989-994 ◽  
pp. 212-215
Author(s):  
J. Liu ◽  
G. Zhu ◽  
W. Mao

The effect of volume fraction of ferrite on the mechanical properties including strength, plasticity and wok hardening was systematically investigated in X80 pipeline steel in order to improve the plasticity. The microstructures with different volume fraction of ferrite and bainite were obtained by heat-treatment processing and the mechanical properties were tested. The work hardening behavior was analyzed by C-J method. The results show that the small amount of ferrite could effectively improve the plasticity. The work hardening ability and the ratio of yield/tensile strength with two phases of ferrite/bainite would be obviously better than that with single phase of bainite. The improvement of plasticity could be attributed to the ferrite in which more plastic deformation was afforded.


1990 ◽  
Vol 5 (5) ◽  
pp. 1095-1103 ◽  
Author(s):  
Ann M. Kazakos ◽  
Sridhar Komarneni ◽  
Rustum Roy

Three series of cordierite powders were prepared by the sol-gel route: a single phase (monophasic) gel prepared from alkoxides, a nominally triphasic nanocomposite gel made with two nanosized powders and one solution phase, and a truly compositionally triphasic nanocomposite gel prepared from three nanosized powders. Crystalline α-cordierite seeds were also incorporated with the gels and their effectiveness as nucleating agents was investigated and found to lower the crystallization temperature of α-cordierite by 125–150°C. The densification behavior of powder compacts was examined and alterations made to the heat treatment until optimum conditions were found. The truly triphasic compact sintered at 1300°C for 2 h resulted in 100% of theoretical density whereas the nominally triphasic and monophasis pellets densified to 96% and 80%, respectively. The enhanced densification achieved with powder compacct prepared for triphasic nanocomposite gels is due to part to the excess free energy of the three components.


Author(s):  
G.V. Shlyakhova ◽  
◽  
A.V. Bochkareva ◽  
M.V. Nadezhkin ◽  
◽  
...  

This study presents experimental results of structural analysis, such as phase composition, grains size assessment, strength and hardness of Ni-SPAN-C alloy 902 after various heat treatment modes (hardening and aging for stress relaxation). A thermal treatment mode has been selected to obtain higher physical and mechanical properties of the elinvar alloy. It is shown that the improvement of the alloy structure in thermal treatment occurs due to the thermic stresses, as well as the formation and dissolution of intermetallides.


2020 ◽  
Vol 321 ◽  
pp. 08003
Author(s):  
Yujun Du ◽  
Xianghong Liu ◽  
Jinshan Li ◽  
Wenzhong Luo ◽  
Yongsheng He ◽  
...  

Small button ingots of Ti2AlNb alloys with different contents of Mo, V and Zr were melted by vacuum non-consumable arc furnace. Due to the rapid cooling rate during melting process, only β grains without precipitation were observed in most of the button ingots and no regular phenomenon was found. However, when the samples were heated to β phase region and then furnace cooled to room temperate, different morphologies and quantities of primary α phase and second O phase formed from the β grains of different samples. It is suggested that the morphology of α phase was changed from lamellar to quadrilateral with increasing V and the lath O increased with increasing Zr. Besides, the residual β/B2 phase increased with increasing Mo and V. The EDS results showed that Al and Zr were enriched in α phase whereas Nb, Mo and V were enriched in β/B2 phase. The micro-hardness of these samples before and after heat treatment was detected and the micro-hardness increased with increasing Zr and decreasing Mo and V.


2000 ◽  
Vol 658 ◽  
Author(s):  
Gregory J. Moore ◽  
Dominique Guyomard ◽  
Scott H. Elder

ABSTRACTA fundamental study of the Li insertion behavior of a series of materials consisting of a TiO2 core having MoO3 on the surface has been carried out in order to determine the influence of the shell. These TiO2-(MoO3)z materials, where (z) denotes the fraction of coverage from a partial to a double layer, range in diameter from 40-100 Å. Calculations have been done on their theoretical lithium capacity using a maximum of Li0.5TiO2 for the core, and Li1.5MoO3 at the TiO2/MoO3 interface, and they have been compared to that found experimentally. The reversible Li-insertion capacity was shown to increase from 0.34 per Ti for the pure TiO2 sample, to 0.91 Li per transition metal when the MoO3 coverage increased to one monolayer. There was only one plateau observed in the electrochemical scans for the samples showing that they function as a single-phase material making them interesting for electrodes. The redox voltage of the TiO2/Li0.5TiO2 biphasic transformation increased 60 mV from the pure TiO2 to the sample containing one monolayer of MoO3. This effect was interpreted as due to a change in TiO2 surface charge coming from an inductive effect of Ti-O-Mo bonds.


2018 ◽  
Vol 25 (10) ◽  
pp. 1191-1200 ◽  
Author(s):  
Hong-yu Zhang ◽  
Chong Li ◽  
Zong-qing Ma ◽  
Li-ming Yu ◽  
Hui-jun Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document