Inaktivierungsversuche mit homozygoten Hefestämmen verschiedenen Ploidiegrades

1962 ◽  
Vol 17 (3) ◽  
pp. 179-187 ◽  
Author(s):  
Werner Stein

Former results of radiation inactivation in homozygous and isogenic yeast strains of different ploidy are compared with equations of target theory. For this purpose it is recessive to consider genetical and plasma lethal processes separately. The induction of recessiv lethal mutations proved to be in fair agreement with an expression developed by POLLARD and coworkers. The rising as well as the declining part of the RBE curve are explained by this equation. The calculated cross section of the target seems to be very similar to that of the cell nucleus.The plasma lethal effects are probably also in agreement with this theory.On the other hand there are difficulties in explaining the RBE curve for dominant lethal mutations in the same way.

1960 ◽  
Vol 15 (11) ◽  
pp. 734-743 ◽  
Author(s):  
Werner Stein ◽  
Wolfgang Laskowski

Experimental data, published in parts I to III of this paper are discussed in respect to specific biological effects responsible for the inactivation of yeast cells by different radiations and organic peroxides. It was differentiated between four biological processes using the experimental results and certain theoretical considerations fitted to a special series of homozygous yeast strains of different ploidy. These four processes are: cytoplasmatic inactivation dependent and independend on ploidy, recessive and dominant lethal mutations. The influence of the “aa-effect“ (resistance to ionizing radiations) observed in diploids heterozygous only for the mating type alleles (aa) and supposed in all strains able to sporulate is discussed and its possible extend estimated.


Genetics ◽  
1977 ◽  
Vol 85 (1) ◽  
pp. 65-72
Author(s):  
W M Generoso ◽  
M Krishna ◽  
R E Sotomayor ◽  
N L A Cacheiro

ABSTRACT Induction of chromosome aberrations in pachytene spermatocytes of mice by 2 mg/kg TEM was compared with induction by 400 R X rays. These doses induced comparably high dominant lethal effects in pachytene spermatocytes of mice. Cytological analysis at diakinesis-metaphase I stage showed that whereas 76.4% of the cells treated with X rays at pachytene stage had aberrations, the frequencies observed in two TEM experiments were only 0.8 and 2.2%. On the other hand, 5% of the progeny from TEM-treated pachytene spermatocytes were found to be translocation heterozygotes. This is the first report on the recovery of heritable translocations from treated spermatocytes of mice. The aberration frequencies observed for TEM in diakinesis-metaphase I were much too low to account for all the lethal mutations and heritable translocations. Thus, the formation of the bulk of aberrations induced by TEM in pachytene spermatocytes was delayed-a marked contrast to the more immediate formation of X-ray-induced aberrations. It is postulated that the formation of the bulk of TEM-induced aberrations in pachytene spermatocytes and in certain postmeiotic stages occurs sometime during spermiogenesis, and not through the operation of postfertilization pronuclear DNA synthesis.


Genetics ◽  
1979 ◽  
Vol 93 (1) ◽  
pp. 163-171
Author(s):  
Walderico M Generoso ◽  
Sandra W Huff ◽  
Katherine T Cain

ABSTRACT There is a close relationship between the rates at which dominant lethal mutations and heritable translocations are induced by ethyl methanesulfonate (EMS) or triethylenemelamine (TEM) in male postmeiotic germ cells. This relationship does not hold for isopropyl methanesulfonate (IMS), which induced only negligible frequencies of heritable translocations at doses that induced high levels of dominant lethal mutations. Nor does IMS behave like EMS and TEM in the degree to which eggs of different stocks of females repair premutational lesions that are carried in the sperm—large differences between stocks for IMS treatment and small differences for EMS or TEM treatment. These dissimilarities between IMS and the other two alkylating chemicals are postulated to be attributable to differences in the types of lesions present at the time of repair activity and to whether or not chromosomal aberrations are already fixed prior to postfertilization pronuclear DNA synthesis.


1958 ◽  
Vol 13 (10) ◽  
pp. 651-657 ◽  
Author(s):  
Werner Stein ◽  
Wolfgang Laskowski

For the interpretation of radiation induced inactivations of microorganisms a multi-target model (a) is frequently used which assumes at least implicitly that only recessive lethal mutations are responsible for the effect. This model is criticized once because it disregards certainly existent dominant lethal mutations as well as cytoplasmic effects and secondly because it employes a highly specialized formula. Proposals are made for the use of a more complete and less specialized formula. The observed crossing of dose-effect-curves of haploid and diploid yeast strains can be explained by this mathematical theory. The importance of the use of endomitotically originated strains of different ploidy and complete homozygous constitution is emphasized. Such strains are available in Saccharomyces.


Author(s):  
V. Mizuhira ◽  
Y. Futaesaku

Previously we reported that tannic acid is a very effective fixative for proteins including polypeptides. Especially, in the cross section of microtubules, thirteen submits in A-tubule and eleven in B-tubule could be observed very clearly. An elastic fiber could be demonstrated very clearly, as an electron opaque, homogeneous fiber. However, tannic acid did not penetrate into the deep portion of the tissue-block. So we tried Catechin. This shows almost the same chemical natures as that of proteins, as tannic acid. Moreover, we thought that catechin should have two active-reaction sites, one is phenol,and the other is catechole. Catechole site should react with osmium, to make Os- black. Phenol-site should react with peroxidase existing perhydroxide.


Author(s):  
J. P. Colson ◽  
D. H. Reneker

Polyoxymethylene (POM) crystals grow inside trioxane crystals which have been irradiated and heated to a temperature slightly below their melting point. Figure 1 shows a low magnification electron micrograph of a group of such POM crystals. Detailed examination at higher magnification showed that three distinct types of POM crystals grew in a typical sample. The three types of POM crystals were distinguished by the direction that the polymer chain axis in each crystal made with respect to the threefold axis of the trioxane crystal. These polyoxymethylene crystals were described previously.At low magnifications the three types of polymer crystals appeared as slender rods. One type had a hexagonal cross section and the other two types had rectangular cross sections, that is, they were ribbonlike.


2019 ◽  
Vol 70 (4) ◽  
pp. 211-216
Author(s):  
Jim Pateman ◽  
Peter Russell

Two Euphydryas aurinea beckeri females from Sierra Blanca, Malaga, Spain were captured and returned to the U.K.; each laid a single egg batch on Succisa pratensis. Both batches hatched and the resulting larvae were reared through to adulthood. One group of larvae produced butterflies with three different mutations: pupae with spines, legs lacking distal tarsals and claws, and with appendages attached to the genitalia which protruded though the rear of the abdomens in both males and females. The other group of larvae produced normal males and females.


Genetics ◽  
1988 ◽  
Vol 120 (4) ◽  
pp. 977-986
Author(s):  
K J Kemphues ◽  
M Kusch ◽  
N Wolf

Abstract We have analyzed a set of linkage group (LG) II maternal-effect lethal mutations in Caenorhabditis elegans isolated by a new screening procedure. Screens of 12,455 F1 progeny from mutagenized adults resulted in the recovery of 54 maternal-effect lethal mutations identifying 29 genes. Of the 54 mutations, 39 are strict maternal-effect mutations defining 17 genes. These 17 genes fall into two classes distinguished by frequency of mutation to strict maternal-effect lethality. The smaller class, comprised of four genes, mutated to strict maternal-effect lethality at a frequency close to 5 X 10(-4), a rate typical of essential genes in C. elegans. Two of these genes are expressed during oogenesis and required exclusively for embryogenesis (pure maternal genes), one appears to be required specifically for meiosis, and the fourth has a more complex pattern of expression. The other 13 genes were represented by only one or two strict maternal alleles each. Two of these are identical genes previously identified by nonmaternal embryonic lethal mutations. We interpret our results to mean that although many C. elegans genes can mutate to strict maternal-effect lethality, most genes mutate to that phenotype rarely. Pure maternal genes, however, are among a smaller class of genes that mutate to maternal-effect lethality at typical rates. If our interpretation is correct, we are near saturation for pure maternal genes in the region of LG II balanced by mnC1. We conclude that the number of pure maternal genes in C. elegans is small, being probably not much higher than 12.


2021 ◽  
Vol 8 (3) ◽  
pp. 52
Author(s):  
Chanon Suntara ◽  
Anusorn Cherdthong ◽  
Metha Wanapat ◽  
Suthipong Uriyapongson ◽  
Vichai Leelavatcharamas ◽  
...  

Saccharomyces cerevisiae is a yeast strain often used to improve the feed quality of ruminants. However, S. cerevisiae has limited capacity to provide biomass when inoculated with carbon sources and a low ability to produce cellulase enzymes. Here, we hypothesized that yeast in the rumen produces a large amount of biomass and could release cellulase enzymes to break down fiber content. Therefore, the aim of this study was to screen, isolate and identify yeast from the rumen fluids of Holstein Friesian steers and measure the efficiency of biomass production and cellulase activity. A fermentation medium containing sugarcane molasses as a carbon source and urea as a nitrogen source was optimized. Two fistulated–crossbred Holstein Friesian steers averaging 350 ± 20 kg body weight were used to screen and isolate the ruminal yeast. Two experiments were designed: First, a 12 × 3 × 3 factorial was used in a completely randomized design to determine biomass and carboxymethyl cellulase activity. Factor A was the isolated yeast and S. cerevisiae. Factor B was sugarcane molasses (M) concentration. Factor C was urea (U) concentration. In the second experiment, potential yeasts were selected, identified, and analyzed for 7 × 4 factorial use in a completely randomized design. Factor A was the incubation times. Factor B was the isolated yeast strains, including codes H-Khon Kaen University (KKU) 20 (as P. kudriavzevii-KKU20), I-KKU20 (C. tropicalis-KKU20), and C-KKU20 (as Galactomyces sp.-KKU20). Isolation was imposed under aerobic conditions, resulting in a total of 11 different colonies. Two appearances of colonies including asymmetric colonies of isolated yeast (indicated as A, B, C, E, and J) and ovoid colonies (coded as D, F, G, H, I, and K) were noted. Isolated yeast from the rumen capable of providing a high amount of biomass when inoculant consisted of the molasses 15% + urea 3% (M15 + U3), molasses 25% + urea 1% (M25 + U1), molasses 25% + urea 3% (M25 + U3), and molasses 25% + urea 5% (M25 + U5) when compared to the other media solution (p < 0.01). In addition, 11 isolated biomass-producing yeasts were found in the media solution of M25 + U1. There were 4 isolates cellulase producing yeasts discovered in the media solution of M25 + U1 and M25 + U5 whereas molasses 5% + urea 1% (M5 + U1), molasses 5% + urea 3% (M5 + U3), molasses 5% + urea 5% (M5 + U5), molasses 15% + urea 1% (M15 + U1), molasses 15% + urea 3% (M5 + U3), and M25 + U3 were found with 2, 3, 1, 2, 1, and 2 isolates, respectively. Ruminal yeast strains H-KKU20, I-KKU20, and C-KKU20 were selected for their ability to produce biomass. Identification of isolates H-KKU20 and I-KKU20 revealed that those isolates belonged to Pichia kudriavzevii-KKU20 and Candida tropicalis-KKU20 while C-KKU20 was identified as Galactomyces sp.-KKU20. Two strains provided maximum cell growth: P. kudriavzevii-KKU20 (9.78 and 10.02 Log cell/mL) and C. tropicalis-KKU20 (9.53 and 9.6 Log cells/mL) at 60 and 72 h of incubation time, respectively. The highest ethanol production was observed in S. cerevisiae at 76.4, 77.8, 78.5, and 78.6 g/L at 36, 48, 60, and 72 h of incubation time, respectively (p < 0.01). The P. kudriavzevii-KKU20 yielded the least reducing sugar at about 30.6 and 29.8 g/L at 60 and 72 h of incubation time, respectively. The screening and isolation of yeasts from rumen fluids resulted in 11 different yeasts being obtained. The potential yeasts discovered in the rumen fluid of cattle were Pichia kudriavzevii-KKU20, Candida tropicalis-KKU20, and Galactomyces sp.-KKU20. P. kudriavzevii-KKU20 had higher results than the other yeasts in terms of biomass production, cellulase enzyme activity, and cell number.


Sign in / Sign up

Export Citation Format

Share Document