NMR-spektroskopische Untersuchungen an 1,1-Thiophendioxid und verwandten Verbindungen / NMR Spectroscopical Investigations of Thiophene 1,1-Dioxide and Related Compounds

1984 ◽  
Vol 39 (7) ◽  
pp. 915-920 ◽  
Author(s):  
Herbert Meier ◽  
Thomas Molz ◽  
Heinz Kolshorn

The 1H and 13C NMR data of thiophene 1,1-dioxide (3) and related compounds, especially of the precursor 2 and the consecutive product 5 are evaluated by computer simulation and multiple resonance. Chemical shifts and coupling constants reveal that 3 has the character of a cyclic diene. Diatropic or paratropic effects can be excluded.

1980 ◽  
Vol 45 (10) ◽  
pp. 2766-2771 ◽  
Author(s):  
Antonín Lyčka

The 13C and 14N NMR spectra of 1M solutions of 1-(substituted phenyl)pyridinium salts (4-CH3, 4-OCH3, H, 4-Cl, 4-Br, 4-I, 3-NO2, 4-NO2, 2,4-(NO2)2 (the 13C NMR only)) have been measured in heavy water at 30 °C. The 13C and 14N chemical shifts, the 1J(CH) coupling constants, some 3J(CH) coupling constants, and values of half-widths Δ 1/2 of the 14N NMR signals are given. The 13C chemical shifts of C(4) correlate with the σ0 constants (δC(4) = (1.79 ± 0.097) σ0 + (147.67 ± 0.041)), whereas no correlation of the nitrogen chemical shifts with the σ constants has been found. The half-widths Δ 1/2 correlate with the σ0 constants (Δ 1/2 = (76.2 ± 4.9) σ0 + (106.4 ± 2.2)) except for 1-phenylpyridinium chloride.


1969 ◽  
Vol 52 (5) ◽  
pp. 1074-1092 ◽  
Author(s):  
L H Keith ◽  
A L Alford ◽  
A W Garrison

Abstract The high resolution nuclear magnetic resonance spectra of the DDT class of pesticides and related compounds are discussed, including a study of the resonances of the aromatic protons as they are affected by various substiluents. The CCl3 moiety on the α-carbon strongly deshields the ortho protons on the aromatic rings, and this deshielding effect is greatly enhanced by substitution of a chlorine ortho rather than para on the aromatic ring. These deshielding effects are explained by a consideration of the electronegativity of the substituents and the stereochemistry of the molecule. The chemical shifts and coupling constants are tabulated.


2004 ◽  
Vol 59 (6) ◽  
pp. 685-691 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Hans-Jörg Schanz

Deprotonation of hexaethyl-2,4-dicarba-nido-borane(8) 2 leads first to the hexaethyl-2,4-dicarbanido- borate(1−) 3, and further deprotonation, using BuLi/KOtBu, gives the hexaethyl-2,4-dicarbanido- hexaborate(2−) 4. The reaction of 3 with FeCl2 affords the commo-ferracarborane [Fe(Et6-2,4- C2B4H)2] 5, and the analogous reaction of 4 leads to the anionic sandwich complex [Fe(Et6-2,4- C2B4)2]2− 6 which can be protonated to give 5. The complex 5 contains two hydrido ligands, each bridging the iron and two boron atoms. Reactions were monitored and the products were characterised by 11B NMR spectroscopy in solution. The geometries of the carboranes, the borates (all unsubstituted and permethyl-substituted) and the iron complexes (all unsubstituted) were optimised by DFT methods [B3LYP/6-311+G(d,p) or B3LYP/6-31+G(d)], and the relevant NMR data [chemical shifts δ11B, δ13C, δ57Fe, and coupling constants 1J(13C,1H), 1J(11B,1H), 1J(57Fe,1H), 1J(57Fe,11B)] were calculated at the same level of theory.


1987 ◽  
Vol 42 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Udo Kunze ◽  
Rolf Tittmann

Abstract A series of alkyl-arylsubstituted N-methyl phosphinothioformamides, R(Ph)PC(S)NHMe (2 a-g), with varying bulkiness of the alkyl rest was synthesized from the racemic secondary phosphines 1a-g and methyl isothiocyanate. 1H and 13C NMR spectra of 2a−g reveal signal sets of diastereotopic nuclei due to the asymmetry of the molecule. The chemical shift and coupling constants were confirmed by simulation in case of 2b, c. The vicinal 31P−13C couplings of the menthyl and neomenthyl compounds 2f, g show an "anti-Karplus" behaviour (3J(gauche) > 3J(trans)) and allow the conformational assignment of the alicyclic group. The 31P chemical shifts of 2a−d give a linear correlation with the cone angle of the alkyl substituents quoted from literature.


1979 ◽  
Vol 34 (11) ◽  
pp. 1606-1611 ◽  
Author(s):  
W. Winter ◽  
K.-P. Zeller ◽  
S. Berger

Abstract A low temperature X-ray study of the enol of benzoylacetone indicates fixed positions of the C and O atoms within the enolic ring system and an extensive bond delocalisation over these atoms. The distribution of electron density between the two oxygen atoms shows that the enolic hydrogen is spread over a wide range. This is in accordance with a structural model proposed by de la Vega, whereupon the C and O atoms are kept fixed in their average positions during a tunneling process of the hydrogen between the two oxygen atoms. With this conception, the chemical shifts in the 17O and 13C NMR spectra, the 13C13C spin coupling constants and the temperature independance of these values can be explained.


1991 ◽  
Vol 46 (3-4) ◽  
pp. 177-182 ◽  
Author(s):  
Hans-W. Rauwald ◽  
Deo-D. Niyonzima

From the leaf exudate of Aloe lateritia ENGLER the C-glucosyl com pounds homonataloin, aloeresin A and aloesin (synon. aloeresin B) were isolated together with the anthraquinone nataloeem odin-8-methylether and spectroscopically identified. Hom onataloin, widely distributed in Aloe species, was separated into homonataloin A and B by combined TLC and DCCC. In their 1 D and 2D 1H NMR spectra only the shifts of the 2′-hydroxyl protons of both glucosyl residues differ significantly, indicative of 10 S (A) resp. 10 S (B) configurations. In both com pounds the anthrone is in β-position of the D-glucopyranosyl, as determined by the large coupling constants of the anomeric protons. The 13C NMR signals are unambiguously assigned by the use of DEPT, APT and gated-decoupling methods. Only the chemical shifts of C -11 and C -14 show significant differences between both diastereomers due to the adjacent 2′-sugar hydroxyls. The two homonataloins differ mostly in optical rotation and circulardichroism due to different configurations at C - 10 of the anthrone part. The absolute configurations of the diastereomers are determined by correlation of their CD spectra with the CD spectra of the structural analogues 7-hydroxyaloins A and B, which shows that hom onataloin A is the 10 S, 1′S-compound and that homonataloin B has 10 R, 1′S-configuration.


1981 ◽  
Vol 36 (8) ◽  
pp. 1017-1022 ◽  
Author(s):  
Herbert Meier ◽  
Johannes Zountsas ◽  
Oswald Zimmer

Abstract A 1H and 13C NMR spectroscopical study is performed on the basis of 37 1,2,3-selena-diazoles. Besides the discussion of chemical shifts and coupling constants of 1H and 13C, selenium satellites were measured providing 1H77 Se and 13C77 Se coupling constants.


1977 ◽  
Vol 32 (11) ◽  
pp. 1296-1303 ◽  
Author(s):  
W. Runge

A comparison between calculated and observed values demonstrates that “ansätze” derived from an algebraic model in connection with appropriate boundary conditions are able to account for a quantitative description of the proton chemical shifts of allenes.Correlations of the proton chemical shifts with other NMR data, such as 13C-chemical shifts and one-bond carbon-proton coupling constants, reveal some insigths into the nature of the 1H substituent chemical shifts of alienes.


1971 ◽  
Vol 49 (19) ◽  
pp. 3143-3151 ◽  
Author(s):  
K. Bailey ◽  
A. W. By ◽  
K. C. Graham ◽  
D. Verner

Data from the p.m.r. spectra of β-amino-, β-aminohydrochloride-, β-hydroxy-, and β-nitro-α-phenyl-propanes having methyl or methoxy substituants on the phenyl ring (37 compounds in all) are presented. The α and β protons of the side-chain give a pattern usually analyzable as ABX. The data are discussed in terms of correlations of coupling constants and chemical shifts with electronegativity of the substituent groups, steric and electronic effects, and apparent changes in rotamer populations. Hydrogen-bonding between the amino group of amphetamines and a methoxyl function at the ortho position in the phenyl ring is indicated for the salts but not the free bases.


1999 ◽  
Vol 54 (6) ◽  
pp. 705-708 ◽  
Author(s):  
Bemd Wrackmeyer ◽  
Sergei V. Ponomarev

The thermally induced decomposition of ethoxyethynyl(trimethyl)tin (1) was studied by 119Sn NMR which revealed the formation o f bis(trimethylstannyl) ketene (2) as the major product, bis(trimethylstannyl) acetic acid ethyl ester (3) as a minor product, and a small amount o f tetramethyltin (4). Full NMR data sets, including coupling constants and isotope induced chemical shifts 1Δ12/ 13C(119Sn) are provided for 1-3 . The first example o f ultra-high resolution 119Sn NMR is shown


Sign in / Sign up

Export Citation Format

Share Document