Co2CrIn: A Further Magnetic Heusler Compound

2006 ◽  
Vol 61 (6) ◽  
pp. 749-752 ◽  
Author(s):  
Sabine Wurmehl ◽  
Gerhard H. Fecher ◽  
Claudia Felser

A further example of the class of Heusler compounds is presented. Co2CrIn is L21 ordered (face centered cubic, space group Fm3̅m) with a lattice constant of a = 6.0596(2) Å . The crystal structure was determined from powder diffraction data by means of the Rietveld method. The magnetic properties of Co2CrIn were measured by means of SQUID magnetometry. The material turns out to be a soft ferromagnet with a saturation moment of 1.2 μB at 5 K

2013 ◽  
Vol 749 ◽  
pp. 192-197
Author(s):  
Xue Min Huang ◽  
Quan Sheng Wang ◽  
Ying Liu ◽  
Xiu Chen Zhao ◽  
Shu Lai Wen

The two kinds of flower-like ultrafine cobalt particles were prepared by reducing cobalt chloride (CoCl2·6H2O) with hydrazine hydrate (N2H4·H2O) under ultrasonic and microwave radiation, in which ethanol-water or ethylene glycol-water mixture was used as solvent. The morphology, crystal structure and magnetic properties of the as-prepared particles were characterized by scanning electron microscope (SEM), x-ray diffraction pattern (XRD) and vibrating sample magnetometer (VSM). The results show that the petals of the flower-like cobalt particles prepared in the ethanol-water system were dendritic, while the petals of the flower-like cobalt particles prepared in the ethylene glycol-water system were sword-like. The crystal structure of cobalt particles prepared in the two kinds of systems both consisted of hexagonal close-packed cubic phase and face-centered cubic phase, but the relative content was different. The saturation magnetization of the cobalt particles with dendritic petals and the cobalt particles with sword-like petals was the same approximately, but their coercivity was greatly different (the difference in value about 7184.14Am-1), which might be attributed to the magnetocrystalline anisotropy and shape anisotropy.


2004 ◽  
Vol 19 (4) ◽  
pp. 329-332
Author(s):  
H. L. Cai ◽  
X. S. Wu ◽  
F. Z. Wang ◽  
A. Hu ◽  
S. S. Jiang ◽  
...  

The crystal structure of La0.67Ca0.33Mn0.80Cu0.20O3 (LCMCO) compound was determined from laboratory X-ray powder diffraction data and refined by the Rietveld method. LCMCO is isostructural with La0.67Ca0.33MnO3 (LCMO). The crystal data are: La0.64Ca0.36Mn0.82Cu0.18O3.01, Mr=843.80, orthorhombic system, space group Pnma, a=5.4364(1) Å, b=7.6725(2) Å, c=5.4452(1) Å, V=227.124(8)Å3, Z=4, Dx=6.168 g∕cm3. In comparing with the Cu-free compound, subtle structural changes such as bond lengths and bond angles found in the Cu-doped compound may be responsible for the larger effects on the transport and magnetic properties when Cu partially substitutes for Mn in CMCO.


1994 ◽  
Vol 9 (2) ◽  
pp. 93-95 ◽  
Author(s):  
David E. McCready ◽  
Mikhail S. Alnajjar

X-ray powder diffraction data for buckminsterfullerene, C60 are reported. The crystal structure is a face-centered cubic unit cell with a = 14.165 (1) Å. The reference intensity ratio (I/Icor) is 2.20.


2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2021 ◽  
pp. 1-6
Author(s):  
Mariana M. V. M. Souza ◽  
Alex Maza ◽  
Pablo V. Tuza

In the present work, LaNi0.5Ti0.45Co0.05O3, LaNi0.45Co0.05Ti0.5O3, and LaNi0.5Ti0.5O3 perovskites were synthesized by the modified Pechini method. These materials were characterized using X-ray fluorescence, scanning electron microscopy, and powder X-ray diffraction coupled to the Rietveld method. The crystal structure of these materials is orthorhombic, with space group Pbnm (No 62). The unit-cell parameters are a = 5.535(5) Å, b = 5.527(3) Å, c = 7.819(7) Å, V = 239.2(3) Å3, for the LaNi0.5Ti0.45Co0.05O3, a = 5.538(6) Å, b = 5.528(4) Å, c = 7.825(10) Å, V = 239.5(4) Å3, for the LaNi0.45Co0.05Ti0.5O3, and a = 5.540(2) Å, b = 5.5334(15) Å, c = 7.834(3) Å, V = 240.2(1) Å3, for the LaNi0.5Ti0.5O3.


2021 ◽  
Vol 7 (3) ◽  
pp. 38
Author(s):  
Roshni Yadav ◽  
Chun-Hsien Wu ◽  
I-Fen Huang ◽  
Xu Li ◽  
Te-Ho Wu ◽  
...  

In this study, [Co/Ni]2/PtMn thin films with different PtMn thicknesses (2.7 to 32.4 nm) were prepared on Si/SiO2 substrates. The post-deposition perpendicular magnetic field annealing (MFA) processes were carried out to modify the structures and magnetic properties. The MFA process also induced strong interlayer diffusion, rendering a less sharp interface between Co and Ni and PtMn layers. The transmission electron microscopy (TEM) lattice image analysis has shown that the films consisted of face-centered tetragonal (fct) PtMn (ordered by MFA), body-centered cubic (bcc) NiMn (due to intermixing), in addition to face-centered cubic (fcc) Co, Ni, and PtMn phases. The peak shift (2-theta from 39.9° to 40.3°) in X-ray diffraction spectra also confirmed the structural transition from fcc PtMn to fct PtMn after MFA, in agreement with those obtained by lattice images in TEM. The interdiffusion induced by MFA was also evidenced by the depth profile of X-ray photoelectron spectroscopy (XPS). Further, the magnetic properties measured by vibrating sample magnetometry (VSM) have shown an increased coercivity in MFA-treated samples. This is attributed to the presence of ordered fct PtMn, and NiMn phases exchange coupled to the ferromagnetic [Co/Ni]2 layers. The vertical shift (Mshift = −0.03 memu) of the hysteresis loops is ascribed to the pinned spins resulting from perpendicular MFA processes.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2018 ◽  
Vol 748 ◽  
pp. 943-952 ◽  
Author(s):  
G. Han ◽  
X. Lu ◽  
Q. Xia ◽  
B. Lei ◽  
Y. Yan ◽  
...  

2020 ◽  
Vol 1009 ◽  
pp. 69-74
Author(s):  
Ekaterina Borisovna Markova ◽  
Alexander Genrihovich Cherednichenko ◽  
V.V. Kurilkin ◽  
J.M. Serov

The influence of the type of crystal structure of complex gadolinium oxides on their catalytic activity was studied using a wide range of physicochemical methods. It was shown that the synthesized nanocrystalline powders Gd2Zr2O7 form highly symmetric face-centered cubic crystal structures. In the course of catalytic experiments, it was found that the formation of a cubic structure increases the degree of conversion of propane and the shift of cracking temperatures to a lower area. The formation of various defects contributes to the course of the dehydrogenation or degradation reaction due to the different number of catalytic centers.


Sign in / Sign up

Export Citation Format

Share Document