Verteilung und enzymatische Hypermethylierung invers repetitiver DNA-Sequenzen in verschiedenen Mäuse-und menschlichen Zellen / Distribution and Enzymic Hypermethylation of Inverted DNA Repeats in Different Murine and Human Cells

1979 ◽  
Vol 34 (7-8) ◽  
pp. 558-564 ◽  
Author(s):  
Thomas L. J. Boehm ◽  
Dusan Drahovsky

Abstract A specific class of DNA sequences, the inverted repetitive sequences, forms a double-stranded structure within a single linear polynucleotide chain in denatured DNA. The reassociation process is unimolecular and occurs very fast. Quantitative analyses have shown that these sequences com-E rise about 4-5% of the nuclear DNA of various mammalian cells (P815 mouse mastocytoma, Hela, L cells, Raji and Chang cells, and human embryonic hepatocytes) and are interspersed within sequences of other degrees of repetitiveness.After labeling the cells with L-[Metnyl-3H]methionine and [14C]deoxycytidine, relative rates of enzymic DNA methylation were computed on the basis of 3H and 14C radioactivities found in py­ rimidine residues of the nuclear DNA. The results indicate that DNA of inverted repetitive sequences is methylated to a level about 50% higher than the ordinary repetitive sequences and to about 300% higher than the unique and intermediary sequences.The biological function of the inverted repeats as well as the role of their enzymic hypermethyl­ ation is unknown.

2020 ◽  
Author(s):  
Kashyap Chhatbar ◽  
Justyna Cholewa-Waclaw ◽  
Ruth Shah ◽  
Adrian Bird ◽  
Guido Sanguinetti

AbstractMeCP2 is an abundant protein in mature nerve cells, where it binds to DNA sequences containing methylated cytosine. Mutations in the MECP2 gene cause the severe neurological disorder Rett syndrome (RTT), provoking intensive study of the underlying molecular mechanisms. Multiple functions have been proposed, one of which involves a regulatory role in splicing. Here we leverage the recent availability of high-quality transcriptomic data sets to probe quantitatively the potential influence of MeCP2 on alternative splicing. Using a variety of machine learning approaches that can capture both linear and non-linear associations, we show that widely different levels of MeCP2 have a minimal effect on alternative splicing in three different systems. Alternative splicing was also apparently indifferent to developmental changes in DNA methylation levels. Our results suggest that regulation of splicing is not a major function of MeCP2. They also highlight the importance of multi-variate quantitative analyses in the formulation of biological hypotheses.


2020 ◽  
Vol 477 (2) ◽  
pp. 325-339 ◽  
Author(s):  
Vaclav Brazda ◽  
Miroslav Fojta ◽  
Richard P. Bowater

DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.


2000 ◽  
Vol 20 (20) ◽  
pp. 7764-7772 ◽  
Author(s):  
Sonu Dhar ◽  
Jeremy A. Squire ◽  
M. Prakash Hande ◽  
Raymund J. Wellinger ◽  
Tej K. Pandita

ABSTRACT Telomeres are complexes of repetitive DNA sequences and proteins constituting the ends of linear eukaryotic chromosomes. While these structures are thought to be associated with the nuclear matrix, they appear to be released from this matrix at the time when the cells exit from G2 and enter M phase. Checkpoints maintain the order and fidelity of the eukaryotic cell cycle, and defects in checkpoints contribute to genetic instability and cancer. The 14-3-3ς gene has been reported to be a checkpoint control gene, since it promotes G2 arrest following DNA damage. Here we demonstrate that inactivation of this gene influences genome integrity and cell survival. Analyses of chromosomes at metaphase showed frequent losses of telomeric repeat sequences, enhanced frequencies of chromosome end-to-end associations, and terminal nonreciprocal translocations in 14-3-3ς−/− cells. These phenotypes correlated with a reduction in the amount of G-strand overhangs at the telomeres and an altered nuclear matrix association of telomeres in these cells. Since the p53-mediated G1 checkpoint is operative in these cells, the chromosomal aberrations observed occurred preferentially in G2 after irradiation with gamma rays, corroborating the role of the 14-3-3ς protein in G2/M progression. The results also indicate that even in untreated cycling cells, occasional chromosomal breaks or telomere-telomere fusions trigger a G2 checkpoint arrest followed by repair of these aberrant chromosome structures before entering M phase. Since 14-3-3ς−/− cells are defective in maintaining G2 arrest, they enter M phase without repair of the aberrant chromosome structures and undergo cell death during mitosis. Thus, our studies provide evidence for the correlation among a dysfunctional G2/M checkpoint control, genomic instability, and loss of telomeres in mammalian cells.


1982 ◽  
Vol 60 (9) ◽  
pp. 847-853 ◽  
Author(s):  
Clifford F. Brunk ◽  
Smiley G. S. Tsao ◽  
Catherine H. Diamond ◽  
Pamela S. Ohashi ◽  
Nora N. G. Tsao ◽  
...  

Genomic libraries of macro- and micro-nuclear DNA of the ciliate protozoan Tetrahymena thermophila were constructed in the bacteriophage vector λgtWESλB. Screening of these libraries with a probe for the repeated hexanucleotide sequence C4A2 showed many phage from the micronuclear library but few if any macronuclear sequences having homology to this probe. This is consistent with C4A2-repeating elements being present predominantly if not exclusively at or near the termini of macronuclear DNA. Sequences flanking C4A2-repeating elements were isolated from a number of purified phage and were used as hybridization probes to restriction endonuclease digested macro- and micro-nuclear DNA. These experiments revealed a repeated sequence family as well as unique sequences present only in micronuclear DNA. The repeated sequence element appears to be dispersed throughout the genome. Phage-containing individual members of this micronucleus limited sequence family were purified from the micronuclear library. Some of these phage contained sequences which hybridized to macronuclear DNA. These fragments therefore contain a "transition" region between micronucleus-limited sequences and sequences present in both nuclei.


2017 ◽  
Vol 372 (1731) ◽  
pp. 20160291 ◽  
Author(s):  
P. Christopher Caridi ◽  
Laetitia Delabaere ◽  
Grzegorz Zapotoczny ◽  
Irene Chiolo

Heterochromatin is mostly composed of repeated DNA sequences prone to aberrant recombination. How cells maintain the stability of these sequences during double-strand break (DSB) repair has been a long-standing mystery. Studies in Drosophila cells revealed that faithful homologous recombination repair of heterochromatic DSBs relies on the striking relocalization of repair sites to the nuclear periphery before Rad51 recruitment and repair progression. Here, we summarize our current understanding of this response, including the molecular mechanisms involved, and conserved pathways in mammalian cells. We will highlight important similarities with pathways identified in budding yeast for repair of other types of repeated sequences, including rDNA and short telomeres. We will also discuss the emerging role of chromatin composition and regulation in heterochromatin repair progression. Together, these discoveries challenged previous assumptions that repair sites are substantially static in multicellular eukaryotes, that heterochromatin is largely inert in the presence of DSBs, and that silencing and compaction in this domain are obstacles to repair. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.


2018 ◽  
Vol 11 ◽  
pp. 251686571881111 ◽  
Author(s):  
Maud de Dieuleveult ◽  
Benoit Miotto

DNA methylation plays an essential role in the control of gene expression during early stages of development as well as in disease. Although many transcription factors are sensitive to this modification of the DNA, we still do not clearly understand how it contributes to the establishment of proper gene expression patterns. We discuss here the recent findings regarding the biological and molecular function(s) of the transcription factor ZBTB38 that binds methylated DNA sequences in vitro and in cells. We speculate how these findings may help understand the role of DNA methylation and DNA methylation–sensitive transcription factors in mammalian cells.


1980 ◽  
Vol 35 (7-8) ◽  
pp. 611-620 ◽  
Author(s):  
Thomas L. J. Boehm ◽  
Dusan Drahovsky

The isolation of transcribed DNA sequences of P815 cells and the partial characterization with respect to their sequence composition and relative rates of enzymatic DNA methylation are reported in this paper. Transcribed regions were purified by affinity chromatography using im­mobilized heterogenous nuclear RNA of P815 cells. About 10% of total genome was found in this fraction. Reassociation analyses showed differences in sequence composition of transcribed versus non-transcribed DNA fractions. The relative proportion of inverted repeats was doubled in the transcribed fraction whereas ordinary highly repetitive sequences comprising mainly of satellite DNA were found almost exclusively in the non-transcribed regions of the P815 genome. About 70% of transcribed portions corresponds to unique and intermediary DNA sequences. After labelling of cells with L-[Methyl-3H]methionine and [14C]deoxycytidine relative rates of enzymatic DNA methylation were computed for different kinetic components of transcribed and non- transcribed portions of P815 genome. No difference was found except in inverted repeats. In transcribed DNA the relative rate of enzymatic DNA methylation was only about 40% of that of the non-transcribed ones. We have quantitated this hypomethylation and found that there is, in average, about one 5-methylcytosine residue in 100 nucleotides of transcribed inverted repeats, compared to about 2.5 5-methylcytosines in non-transcribed fractions. In view of these data we propose that the enzymatic methylation of inverted DNA repeats negatively controls the tran­scriptional process in a given genomic region.


2020 ◽  
Author(s):  
Jana Zwyrtková ◽  
Alžběta Němečková ◽  
Jana Čížková ◽  
Kateřina Holušová ◽  
Veronika Kapustová ◽  
...  

Abstract Background Cultivated grasses are an important source of food for domestic animals worldwide. Better knowledge of their genomes can speed up development of cultivars with better quality and resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass ( Lolium ) species and diploid and hexaploid fescues ( Festuca ) species. In this work we characterized repetitive DNA sequences and their contribution to genome size in seven fescue and ryegrass species. Results Partial genome sequences were produced by Illumina technology and used for genome-wide comparative analyses using RepeatExplorer pipeline. Retrotransposons were found to be the most abundant repeat types in all seven grass species. Athila element of Ty3/gypsy family showed most striking difference in copy numbers in nuclear genomes between fescues and ryegrasses. The sequence data enabled the assembly of an LTR element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of FISH with a probe specific to Fesreba element and immunostaining with CENH3 antibody showed their colocalization and indicated a possible role of Fesreba in centromere function. Conclusions Comparative analysis of repeatome in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of LTR element Fesreba. The element was abundant in centromeric regions of the fescues and ryegrasses and may have a role in function of their centromeres.


2020 ◽  
Author(s):  
Jana Zwyrtková ◽  
Alžběta Němečková ◽  
Jana Čížková ◽  
Kateřina Holušová ◽  
Veronika Kapustová ◽  
...  

Abstract Background Cultivated grasses are an important source of food for domestic animals worldwide. Better knowledge of their genomes can speed up the development of new cultivars with better quality and resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species ( Lolium spp.) and diploid and hexaploid fescue species ( Festuca spp.). In this work we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species, as well as one fescue and two ryegrass cultivars. Results Partial genome sequences produced by Illumina technology were used for genome-wide comparative analyses using RepeatExplorer pipeline. Retrotransposons were found to be the most abundant repeat types in all seven grass species. Athila element of Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of an LTR element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of FISH with a probe specific to Fesreba element and immunostaining with CENH3 antibody showed their colocalization and indicated a possible role of Fesreba in centromere function. Conclusions Comparative repeatome analysis in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of LTR element Fesreba. A new LTR element Fesreba was identified and found abundant in centromeric regions of the fescues and ryegrasses. It may have a role in the function of their centromeres.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Sign in / Sign up

Export Citation Format

Share Document