Separation of Bioactive Biflavonoids from Rheedia gardneriana Using Chitosan Modified with Benzaldehyde

2005 ◽  
Vol 60 (5-6) ◽  
pp. 408-410 ◽  
Author(s):  
Leury G. J. Girardi ◽  
Michele Morsch ◽  
Ana E. Oliveira ◽  
Valdir Cechinel-Filho ◽  
Clóvis Antonio Rodrigues

This paper shows the influence of benzenic groups on the chitosan surface for the separation of bioactive biflavonoids from Rheedia gardneriana leaves. The yield of the biflavonoids using chitin modified with benzaldehyde (CH-Bz) as adsorbent in column chromatography was higher than that achieved with silica gel and chitosan. The presence of benzenic groups decreases the polarity of chitosan and consequently the interaction of hydrogen bonding between phenolic hydroxyl (OH) of biflavonoids and amine groups of the adsorbent. Therefore, the separation of these compounds appears to be the result of hydrophobicity and π-π interaction among electrons from the aromatic ring in sorbent and biflavonoid molecules.

2019 ◽  
Vol 19 (11) ◽  
pp. 1399-1404 ◽  
Author(s):  
Yangcheng Liu ◽  
Wei Liu ◽  
Changlan Chen ◽  
Zheng Xiang ◽  
Hongwei Liu

Background and Purpose:: Patrinia villosa Juss is an important Chinese herbal medicine widely used for thousands of years, but few reports on the ingredients of the herb have been presented. In this study, we aim to isolate the bioactive compound from the plant. Material and Methods:: The air-dried leaves of P. villosa (15kg) were extracted three times with 70% EtOH under reflux. The condensed extract was suspended in H2O and partitioned with light petroleum, dichloromethane and n-BuOH. The dichloromethane portion was then subjected to normal-phase silica gel column chromatography, ODS silica gel column chromatography and semi-preparative HPLC to yield compound 1. Cytotoxicities of 1 were assayed on HepG2, A549 and A2780 cell lines. The mechanism of apoptosis and cell cycle on A549 was confirmed subsequently. Results: A new impecylone (Impecylone A) was isolated from the leaves of Patrinia villosa Juss, and its structures were established using 1D, 2D-NMR spectra and HR-ESI-MS. Impecylone A could selectivity inhibit HepG2 and A549 cell lines. The compound could induce apoptosis of A549 and arrest the cell cycle at G2/M phase in a dose-dependent manner. Conclusion: Impecylone A is a novel compound from Patrinia villosa Juss and could be a potential antitumor agent especially in the cell lines of A549.


1964 ◽  
Vol 5 (3) ◽  
pp. 479-481
Author(s):  
Quincy E. Crider ◽  
Petar Alaupovic ◽  
Joe Hillsberry ◽  
Cathy Yen ◽  
Reagan H. Bradford

2021 ◽  
Vol 22 (14) ◽  
pp. 7482
Author(s):  
Hwan Lee ◽  
Zhiming Liu ◽  
Chi-Su Yoon ◽  
Linsha Dong ◽  
Wonmin Ko ◽  
...  

Aging is associated with immune disregulation and oxidative stress which lead to inflammation and neurodegenerative diseases. We have tried to identify the anti-neuroinflammatory and anti-inflammatory components of Coreopsis lanceolata L. The dried flowers of C. lanceolata were extracted with 70% EtOH, and the obtained extract was divided into CH2Cl2, EtOAc, n-BuOH, and H2O fractions. The CH2Cl2 fraction was separated using silica gel and C-18 column chromatography to yield phenylheptatriyne (1), 2′-hydroxy-3,4,4′-trimethoxychalcone (2), and 4′,7-dimethoxyflavanone (3). Additionally, the EtOAc fraction was subjected to silica gel, C-18, and Sephadex LH-20 column chromatography to yield 8-methoxybutin (4) and leptosidin (5). All the compounds isolated from C. lanceolata inhibited the production of nitric oxide (NO) in LPS-induced BV2 and RAW264.7 cells. In addition, phenylheptatriyne and 4′,7-dimethoxyflavanone reduced the secretion of inflammatory cytokines, tumor necrosis factor alpha (TNF-α), and interleukin (IL)-6. Among them, phenylheptatriyne was significantly downregulated in the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequently, phenylheptatriyne also effectively inhibited nuclear factor-kappa B (NF-κB) activation in LPS-stimulated BV2 and RAW264.7 cells. Based on these results, the anti-neuroinflammatory effect of phenylheptatriyne isolated from C. lanceolata was confirmed, which may exert a therapeutic effect in treatment of neuroinflammation-related diseases.


ChemInform ◽  
2010 ◽  
Vol 32 (28) ◽  
pp. no-no
Author(s):  
Mikiko Sodeoka ◽  
Ruriko Sampe ◽  
Sachiko Kojima ◽  
Yoshiyasu Baba ◽  
Naoko Morisaki ◽  
...  

1995 ◽  
Vol 144 (3) ◽  
pp. 517-525 ◽  
Author(s):  
S Moslemi ◽  
P Silberzahn ◽  
J-L Gaillard

Abstract Explants of equine full-term placenta have been shown to synthesize 19-norandrogens from labelled androgens. Steroid metabolites were purified by silica-gel column chromatography then analysed and quantified by C18-reverse-phase HPLC coupled to a radioactive flow detector. 19-Norandrostenedione was subsequently recrystallized to constant specific activity, providing unequivocal evidence of its synthesis by the equine placenta. 19-Norandrostenedione synthesis appeared to be localized in the microsomal fraction. Regardless of the substrate used, formation of 19-norandrogens was far weaker than that of oestrogens; moreover, the yield of 17-oxosteroids produced was much greater than that of 17β-hydroxysteroids, suggesting the presence of a dehydrogenase with predominant oxidative activity. Sulphoconjugated steroids formed were less than 0·5% of total steroids. Although 19-nortestosterone could not be generated by equine purified aromatase incubated with labelled testosterone, the synthesis of 19-norandrogens and oestrogens by equine placental explants was blocked by two specific aromatase inhibitors, 4-hydroxyandrostenedione and fadrozole. Our results provide evidence for a placental origin of at least a part of the 19-norandrogens previously identified in the blood of the pregnant mare. Furthermore, it is suggested that 19-norandrogen biosynthesis would involve the enzymatic metabolism of 19-oxygenated androgens formed by equine aromatase. Journal of Endocrinology (1995) 144, 517–525


2021 ◽  
Vol 25 (1) ◽  
pp. 86-92
Author(s):  
B.A. Ayinde ◽  
J.O. Owolabi ◽  
I.S. Uti ◽  
P.C. Ogbeta ◽  
M.I. Choudhary

The antidiarrhoeal effect of Waltheria indica methanol extract and fractions have been reported earlier but, the present work examined the intestinal relaxant effects of two flavonoid-phenyl propanoids isolated from the methanol extract. The active aqueous fraction was subjected to vacuum liquid chromatography using dichloromethane with increasing concentration of ethyl acetate, and that of methanol and water successively. The ten (10) fractions obtained were combined to give seven (7). The fraction 2 (C, D) was subjected to preparative thin layer chromatography on silica gel GF254 (10-40μm) using CHCl3-CH3OH (8:2) to obtain compound coded F2. Fraction 4 (F) was subjected to column chromatography using silica gel (60-120μm mesh) and eluted with  dichloromethane with increasing concentrations of methanol. Fractions 9-28 were combined and subjected to column  chromatography using chloroform with increasing concentration of methanol. The fractions 1-16 of these were purified on Sephadex LH-20 to obtain compound BAA. The identities of the two compounds were established using spectroscopic methods. The  antidiarrheal effect of compound F2 was evaluated on mice using charcoal transit (100,200, 400mg/kg), castor oil (40, 60 mg/kg)  while the two compounds were examined for their inhibitory effects on Ach-induced ileum contraction. The effects of the  compounds were compared with loperamide (3mg/kg) and atropine (80μg). Compounds F2 and BAA were identified as tiliroside and 3’’’, 5’’’-dimethoxy tiliroside respectively. Tiliroside inhibited the charcoal transition in the animals in a dose dependent pattern with 400mg/ mL eliciting 63.41% inhibition compared to 59.23% produced by loperamide. The compound also elicited significantly (P<0.05) prolonged onset of stooling and reduced the number and weight of stools produced lower than the control. The two  compounds drastically inhibited the Ach-induced contractions of the ileum. The compound, tiliroside at 10mg, completely abolished  the contraction by Ach unlike 3’’’, 5’’’-dimethoxy tiliroside which reduced the contraction to 1.92% at 20mg. The identified compounds seem to be responsible for the ethnomedicinal use of the plant in treating diarrhea.


2018 ◽  
Vol 74 (9) ◽  
pp. 1295-1298
Author(s):  
Jan Fábry

Two of the constituent molecules in the title structure, 2C6H7N2O+·HPO3 2−·H2O, i.e. the phosphite anion and the water molecule, are situated on a symmetry plane. The molecules are held together by moderate N—H...O and O—H...N, and weak O—H...O and C—H...Ocarbonyl hydrogen bonds in which the amide and secondary amine groups, and the water molecules are involved. The structural features are usual, among them the H atom bonded to the P atom avoids hydrogen bonding.


Author(s):  
Jamilah Abbas ◽  
Achmad Darmawan ◽  
Syafruddin Syafruddin

The soulatro coumarin compound was isolated and elucidated from the stem bark of Calophyllum soulattri Burm F, the samples were collected from Jayapura Papua Irian Island in Indonesia. Isolation process was done by maceration at room temperature in methanol, than partitioned in a mixture of n hexane-water (1:1), followed by dichloromethane-water (1:1)  and ethyl acetate-water (1:1). A portion of ethyl acetate extract was subjected to column chromatography over silica gel packed and eluted with n-hexane a gradient of ethyl acetate to 100% followed by CHCl3  in MeOH (20:1, 10 :1, 5:1, 1:1). Fraction  B (CHCl3 in MeOH 20:1) was subjected to column chromatography  over silica gel 300 mesh  and eluted with EtOAc-MeOH mixtures of increasing polarity. Faction with the same Rf valeus were combined and eluted with EtOAc-MeOH  (19:1) showed one spot on TLC. They were combined and evaporated to yield a solid than was recrystallized in mixture of CH2Cl2-methanol to give soulatro coumarin compound. The structure was determinated by spectroscopic analysis, in particular by 1D and 2D NMR techniques, from these spectra data conclution that compound is soulatro coumarin. Antimalarial assay was tested against Plasmodium berghei parasite as in vivo using 18 mices rodent wich was infected by  Plasmodium berghei parasite. The soulatro coumarin  showed activity against P. berghei with dosage 0.0005867 mM/1 kg body weight ; 0.005867 mM/1 kg bw; 0.05867 mM/1 kg bw; 0.5867 mM/1 kg bw 5.867 mM/1 kg bw and 58.67 mM/1 kg bw could inhibite growth rate of parasite = 57.32%; 63.37%; 43.02%; 53.49%; 47.67% respectively.Keywords : Antiplasmodial activity, coumarin, Calophyllum soulattri Burm. F, in vivo, Chloroquine, Plasmodium berghei.


Sign in / Sign up

Export Citation Format

Share Document