scholarly journals Effect of geographical origin on yield and composition of cone essential oils of Cedrus libani A. Rich. growing in Lebanese protected areas and variability assessment in comparison with literature survey

2020 ◽  
Vol 75 (7-8) ◽  
pp. 255-264
Author(s):  
Raviella Zgheib ◽  
Marc El Beyrouthy ◽  
Youssef El Rayess ◽  
Mira Dahi ◽  
Nancy Nehme ◽  
...  

AbstractGas chromatography–mass spectrometry analysis together with principal component analysis revealed that geographical origin influenced the yield and composition of the essential oils (EOs) extracted by hydrodistillation performed for 3 h using a Clevenger-type apparatus, from the cones of Cedrus libani A. Rich., growing wild at four Lebanese natural reserves and protected areas: Bsharri, Chouf, Ehden, and Tannourine, and from a cultivated cedar growing in Qartaba. Essential oil chemical variability established between the different studied provenances suggested the involvement of abiotic factors such as geographical conditions, cultivation conditions, soil composition, and environmental factors in the chemical polymorphism of C. libani cones EOs. α-Pinene/β-pinene characterized Ehden (β-pinene 35.6%/α-pinene 27.7%), Chouf (α-pinene 37.3%/β-pinene 26.1%), Bsharri (α-pinene 27.7%/β-pinene 21.4%), and Tannourine (α-pinene 25.1%/β-pinene 16.0%) samples, whereas Qartaba EO was distinguished by the dominance of myrcene (30.6%), α-pinene(26%), and limonene (14.1%). Comparison with the existing literature reinforced the chemical variability of C. libani EOs. This current study helped the estimation of a best harvest location for a good EO quality production, resource optimization, and pharmacological properties evaluation, according to the market demand.

Foods ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 175 ◽  
Author(s):  
Tibet Tangpao ◽  
Hsiao-Hang Chung ◽  
Sarana Sommano

The research objectives of this study are to analyse the volatile compositions of different basil types available in Thai markets and to descriptively determine their aromatic qualities. Essential oils were hydro-distillated from fresh leaves of two Holy basil (Ocimum sanctum) varieties namely, white and red and other basil species, including Tree basil (O. gratissimum), Thai basil (O. basilicum var. thyrsiflorum), and Lemon basil (O. citriodorum). Oil physiochemical characteristics and volatile chromatograms from Gas Chromatography–Mass Spectrometry (GC-MS) were used to qualitatively and quantitatively describe the chemical compositions. Estragole, eugenol, and methyl eugenol were among the major volatiles found in the essential oils of these basil types. Classification by Principal Component Analysis (PCA) advised that these Ocimum spp. samples are grouped based on either the distinctive anise, citrus aroma (estragole, geranial and neral), or spice-like aroma (methyl eugenol, β-caryophyllene, and α-cubebene). The essential oils were also used for descriptive sensorial determination by five semi-trained panellists, using the following developed terms: anise, citrus, herb, spice, sweet, and woody. The panellists were able to differentiate essential oils of white Holy basil from red Holy basil based on the intensity of the anisic attribute, while the anise and citrus scents were detected as dominant in the Lemon basil, Tree basil, and Thai basil essential oils. The overall benefit from this research was the elucidation of aromatic qualities from Thai common Ocimum species in order to assess their potential as the raw materials for new food products.


Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 164
Author(s):  
Nasifu Kerebba ◽  
Adebola O. Oyedeji ◽  
Robert Byamukama ◽  
Simon K. Kuria ◽  
Opeoluwa O. Oyedeji

The aim of this research is to characterize the variation in the chemical composition of Tephrosia vogelii essential oils from different locations and to investigate the repellency of essential oils against Sitophilus zeamais. Chemical variability in the components of T. vogelii essential oils from eastern Uganda was identified using principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). Based on the profiles of the compounds of the farnesene family, three chemotypes were found: farnesol (chemotype 1), springene (β-springene and α-springene) and β-farnesene were all distinctive in chemotype 2 and a mixed variety of farnesol and springene. In the three cases, alkyl benzenes (o-xylene, m-xylene and ethylbenzene) were significant components in the oil. The compounds 1,4-dihydroxy-p-menth-2-ene, 6,10-dimethyl-5,9-undecadien-2-one, and 3,4-dimethyl-3-cyclohexen-1-carboxaldehyde were other prominent constituents. The yields of the essential oils did not vary significantly, however the chemical composition varied with harvesting time during the rainy and dry seasons. In choice repellency tests, chemotype 1 and chemotype 2 were more active against Sitophilus zeamais than the mixed chemotype. Farnesol was found to be effective only at a higher concentration as a repellent against S. zeamais. We therefore hypothesize that farnesol is a key player in this and we demonstrated the weak repellency of this compound. However, further study that aims to optimize and standardize the varieties and harvesting period is needed for recommendation to smallhold farmers.


2018 ◽  
Vol 10 (2) ◽  
pp. 10 ◽  
Author(s):  
Akinsola Akande ◽  
Sherifat Aboaba ◽  
Guido Flamini

Albizia adiantifolia (Schumach) W.F. Wright (Fabaceae) is a plant used traditionally in treating different health ailments which includes worm infections. The essential oils (EOs) were obtained by hydrodistillation in an all glass Clevenger apparatus, and characterized by gas chromatography (GC) and gas chromatography-mass spectrometry analysis (GC-MS). In vitro petri-dish anthelmintic activity was carried out using adult earthworm, Eudrilus eugeniae. The leaves, stem bark and root bark EOs afforded a total of 40, 26 and 20 constituents representing 90.9%, 94.1% and 90.9% of the total oil fractions respectively. The classes of compounds identified in the leaves, stem bark and root bark are oxygenated monoterpenes (4.1%, 1.7% and 4.0% respectively), sesquiterpene hydrocarbons (39.5%, 67.3% and 42.6% respectively), oxygenated sesquiterpenes (18.7%, 22.3% and 30.1% respectively), non-terpene derivatives (12.1%, 2.6% and 14.2% respectively) and apocarotenoids (16.5% and 0.2% in the leaves and stem-bark). β-caryophyllene (23.0%), E-geranylacetone (7.4%), acorenone (6.4%), viridiflorol (6.4%), α-zingiberene (6.3%) and ar-curcumene (4.6%) were the major constituents in the leaves oil, β-caryophyllene (39.3%), selin-11-en-4-α-ol (10.4%), α-zingiberene (9.6%), ar-curcumene (7.2%), caryophyllene oxide (6.4%) and α-humulene (5.6%) were the major constituents in the stem bark oil, while β-caryophyllene (32.1%), selin-11-en-4-α-ol (13.1%), caryophyllene oxide (8.4%), pentadecanal (6.1%) and α -humulene (4.4%) were the major constituents in the root bark oil. β -caryophyllene dominated the oils. The leaf EO was the most active against E. eugeniae worm. All the oils showed a relatively higher activity compared to Albendazole, in a concentration dependent manner. There was significant difference (p<0.001) in activity.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1433
Author(s):  
Suzana Struiving ◽  
Ana Carolina Mendes Hacke ◽  
Edésio Luiz Simionatto ◽  
Dilamara Riva Scharf ◽  
Cláudia Vargas Klimaczewski ◽  
...  

This study aimed to characterize and compare essential oils and ethyl acetate fractions obtained in basic and acidic conditions from both male and female Baccharis species (Baccharis myriocephala and Baccharis trimera) from two different Brazilian regions. Samples were characterized according to their chemical compositions and antiradical activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays. Principal component analysis (PCA) provided a clear separation regarding the chemical composition of essential oils from the samples obtained from different regions by using gas chromatography–mass spectrometry with flame-ionization detection (GC-MS-FID). PCA also revealed that gender and region of plant collections did not influence the chemical composition and antiradical activity of ethyl acetate fractions, which was corroborated with hierarchical cluster analysis (HCA) data. High performance liquid chromatography with diode-array detector (HPLC-DAD) identified significant quantities of flavonoids and phenolic acids in the fractions obtained in basic and acidic fractions, respectively. The obtained results clearly demonstrated that the geographical region of plant collection influenced the chemical composition of essential oils from the studied Baccharis species. Moreover, the obtained fractions were constituted by several antiradical compounds, which reinforced the usage of these species in folk medicine.


2013 ◽  
Vol 8 (1) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Laura Guerra-Boone ◽  
Rocío Álvarez-Román ◽  
Ricardo Salazar-Aranda ◽  
Anabel Torres-Cirio ◽  
Verónica Mayela Rivas-Galindo ◽  
...  

The essential oils from Magnolia grandiflora and Chrysactinia mexicana leaves, and from Schinus molle leaves and fruit, were characterized by gas chromatography/flame-ionization detection and gas chromatography/mass spectrometry. Twenty-eight compounds from M. grandiflora leaves were identified (representing 93.6% of the total area of the gas chromatogram), with the major component being bornyl acetate (20.9%). Colorless and yellow oils were obtained from the C. mexicana leaves with 18 (86.7%) and 11 (100%) compounds identified, respectively. In both fractions, the principal component was sylvestrene (36.8% and 41.1%, respectively). The essential oils of S. molle leaves and fruit were each separated into colorless and yellow fractions, in which 14 (98.2) and 20 (99.8%) compounds were identified. The main component was α-phellandrene in all fractions (between 32.8% and 45.0%). The M. grandiflora oil displayed antifungal activity against five dermatophyte strains. The oils from S. molle and M. grandiflora leaves had antimicrobial activity against Staphylococcus aureus and Streptococcus pyogenes, which cause skin infections that potentially may lead to sepsis. However, the antioxidant activities of all oils were small (half maximal effective concentration values >250 μg/mL).


2016 ◽  
Vol 14 (1) ◽  
pp. 343-350
Author(s):  
Choukri Tefiani ◽  
Ali Riazi ◽  
Boumediene Belbachir ◽  
Hicham Lahmar ◽  
Smail Aazza ◽  
...  

AbstractThe chemical variability and antioxidant activity of the flower and leaf essential oils (EOs) of Ammoides pusilla, collected at Algeria was evaluated. The EOs were isolated by hydrodistillation and analyzed by Gas Chromatography (GC) and Gas Chromatography-Mass Spectrometry (GC-MS). Antioxidant activity was assessed by DPPH, ABTS, Reducing Power and TBARS assays. Oxygen-containing monoterpenes (54-77%) dominated all but one A. pusilla leaf EOs, and in two flower EOs (53% both). Thymol dominated in practically all leaf and flowers EOs, but cumin alcohol, p-cymene and limonene attained also relatively high percentages in some EOs. A strong negative correlation (p<0.01) between IC50 values of ABTS, DPPH, and hydroxyl scavenging activity and the percentages of p-cymene and cumin alcohol present in EOs were observed, showing that higher levels of these monoterpenes were responsible for the best activities found. In spite of this finding, the antagonism and/or synergism between EO components must be taken into account, since the EO activity can only be considered as a whole. Moreover, given the EOs chemical variability their use as antioxidants, should be preceded by their chemical evaluation.


Sign in / Sign up

Export Citation Format

Share Document