Microwave Accelerated Green Synthesis of Gold Nanoparticles Using Gum Arabic and their Physico-Chemical Properties Assessments

2018 ◽  
Vol 232 (3) ◽  
pp. 325-343 ◽  
Author(s):  
Maryam Eskandari-Nojehdehi ◽  
Hoda Jafarizadeh-Malmiri ◽  
Abbas Jafarizad

AbstractMicrowave enhanced gold nanoparticles (Au NPs) were synthesized using gum Arabic as both reducing and stabilizing agents. Response surface methodology was applied to study effects of the Au NPs synthesized parameters, namely, microwave exposure time (90–180 s) and the amount of AgNO3solution (1–10 mL) on the mean particle size, mixture solution color and concentration of the synthesized Au NPs. The colloidal solution containing well-dispersed and spherical fabricated Au NPs with mean particle size (22 nm) and maximum concentration (159 ppm) and color (1.12 absorbance unit, a.u.), were obtained at the optimal synthesis conditions, using 8.17 mL of HAuCl4(1 mM) and 2 mL of gum Arabic solution (4% w/v) during microwave exposure time of 180 s. The physico-chemical properties of the synthesized Au NPs at obtained optimum synthesis conditions were characterized by Fourier transform-infrared spectroscopy, UV-Vis spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and field emission scanning electron microscopy.

2018 ◽  
Vol 7 (3) ◽  
pp. 231-240 ◽  
Author(s):  
Omid Ahmadi ◽  
Hoda Jafarizadeh-Malmiri ◽  
Naeimeh Jodeiri

Abstract Silver nanoparticles (AgNPs) were synthesized using Aloe vera leaf extract as both reducing and stabilizing agents via microwave irradiation method. The effects of the microwave exposure time and the amount of AgNO3 solution on the mean particle size and concentration of the synthesized AgNPs solution were investigated using response surface methodology. The synthesized AgNPs were characterized by transmission electron microscopy, UV-Vis spectroscopy, and dynamic light scattering. Well-dispersed and spherically fabricated AgNPs with mean particle size (46 nm) and maximum concentration (64 ppm) and zeta potential (+15.5 mV), were obtained at optimal synthesis conditions, using 9 ml of AgNO3 (1 mm) and 0.1 ml of Aloe vera extract during microwave exposure time of 360 s. The antibacterial activity of the synthesized AgNPs was tested using Escherichia coli and Staphylococcus aureus bacteria and the obtained results indicated their significant inhibitory effects against these two Gram-negative and Gram-positive bacteria.


2018 ◽  
Vol 7 (3) ◽  
pp. 217-224 ◽  
Author(s):  
Sarah Ghanbari ◽  
Hamideh Vaghari ◽  
Zahra Sayyar ◽  
Mohammad Adibpour ◽  
Hoda Jafarizadeh-Malmiri

Abstract Silver nanoparticles (AgNPs) were synthesized using Aspergillus fumigatus (A. fumigatus) mycelia extract via the hydrothermal method. The main reducing and stabilizing groups and components of A. fumigatus extract, such as amine, hydroxyl, amid, protein, enzymes, and cell saccharide compounds, were identified by Fourier transform infrared (FT-IR). Central composition design was used to plan the experiments, and response surface methodology was applied to evaluate of the effects of independent variables, including the amount of the prepared extract (5–7 ml) and heating time (10–20 min) at 121°C and 1.5 bar), on the particle size of the synthesized AgNPs, as manifested in broad emission peak (λmax). More stable and spherical monodispersed AgNPs, with mean particle size, polydispersity index (PDI) value, and maximum ζ potential value of 23 nm, 0.270, and +35.3 mV, respectively, were obtained at the optimal synthesis conditions using 7 ml of A. fumigatus extract and heating time of 20 min. The synthesized AgNPs indicated high antibacterial activity against both Gram-positive and Gram-negative bacteria.


Food Biology ◽  
1970 ◽  
pp. 19-23
Author(s):  
Nawal Abdel-Gayoum Abdel-Rahman

The aim of this study is to use of karkede (Hibiscus sabdariffa L.) byproduct as raw material to make ketchup instead of tomato. Ketchup is making of various pulps, but the best type made from tomatoes. Roselle having adequate amounts of macro and micro elements, and it is rich in source of anthocyanine. The ketchup made from pulped of waste of soaked karkede, and homogenized with starch, salt, sugar, ginger (Zingiber officinale), kusbara (Coriandrum sativum) and gum Arabic. Then processed and filled in glass bottles and stored at two different temperatures, ambient and refrigeration. The total solids, total soluble solids, pH, ash, total titratable acidity and vitamin C of ketchup were determined. As well as, total sugars, reducing sugars, colour density, and sodium chloride percentage were evaluated. The sensory quality of developed product was determined immediately and after processing, which included colour, taste, odour, consistency and overall acceptability. The suitability during storage included microbial growth, physico-chemical properties and sensory quality. The karkede ketchup was found free of contaminants throughout storage period at both storage temperatures. Physico-chemical properties were found to be significantly differences at p?0.05 level during storage. There were no differences between karkade ketchup and market tomato ketchup concerning odour, taste, odour, consistency and overall acceptability. These results are encouraging for use of roselle cycle as a raw material to make acceptable karkade ketchup.


Author(s):  
Spyridon Damilos ◽  
Ioannis Alissandratos ◽  
Luca Panariello ◽  
Anand N. P. Radhakrishnan ◽  
Enhong Cao ◽  
...  

AbstractA continuous manufacturing platform was developed for the synthesis of aqueous colloidal 10–20 nm gold nanoparticles (Au NPs) in a flow reactor using chloroauric acid, sodium citrate and citric acid at 95 oC and 2.3 bar(a) pressure. The use of a two-phase flow system – using heptane as the continuous phase – prevented fouling on the reactor walls, while improving the residence time distribution. Continuous syntheses for up to 2 h demonstrated its potential application for continuous manufacturing, while live quality control was established using online UV-Vis photospectrometry that monitored the particle size and process yield. The synthesis was stable and reproducible over time for gold precursor concentration above 0.23 mM (after mixing), resulting in average particle size between 12 and 15 nm. A hydrophobic membrane separator provided successful separation of the aqueous and organic phases and collection of colloidal Au NPs in flow. Process yield increased at higher inlet flow rates (from 70 % to almost 100 %), due to lower residence time of the colloidal solution in the separator resulting in less fouling in the PTFE membrane. This study addresses the challenges for the translation of the synthesis from batch to flow and provides tools for the development of a continuous manufacturing platform for gold nanoparticles.Graphical abstract


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Seyedalireza Mortazavi Tabrizi ◽  
Afshin Javadi ◽  
Navideh Anarjan ◽  
Seyyed Javid Mortazavi Tabrizi ◽  
Hamid Mirzaei

AbstractGarlic oil in water nanoemulsion was resulted through subcritical water method (temperature of 120 °C and pressure of 1.5 bar, for 2 h), using aponin, as emulsifier. Based on the prepared garlic oil nanoemulsion, astaxanthin–garlic oil nanoemulsions were prepared using spontaneous microemulsification technique. Response surface methodology was employed to evaluate the effects of independent variables namely, amount of garlic oil nanoemulsion (1–9 mL) and amount of provided astaxanthin powder (1–9 g) on particle size and polydispersity index (PDI) of the resulted nanoemulsions. Results of optimization indicated that well dispersed and spherical nanodroplets were formed in the nanoemulsions with minimum particle size (76 nm) and polydispersity index (PDI, 0.358) and maximum zeta potential value (−8.01 mV), using garlic oil nanoemulsion amount of 8.27 mL and 4.15 g of astaxanthin powder. Strong antioxidant activity (>100%) of the prepared astaxanthin–garlic oil nanoemulsion, using obtained optimum amounts of the components, could be related to the highest antioxidant activity of the colloidal astaxanthin (>100%) as compared to that of the garlic oil nanoemulsion (16.4%). However, higher bactericidal activity of the resulted nanoemulsion against Escherichia coli and Staphylococcus aureus, were related to the main sulfur bioactive components of the garlic oil in which their main functional groups were detected by Fourier transform-infrared spectroscopy.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Ashraf Farshbaf-Sadigh ◽  
Hoda Jafarizadeh-Malmiri ◽  
Navideh Anarjan ◽  
Yahya Najian

Abstract Ginger oil in water (O/W) nanoemulsions, were produced using phase inversion composition method and Tween 80, as emulsifier. Effects of processing parameters namely, stirring rate (100 to1000 rpm) and water addition rate (1–10 mL/min) were evaluated on the physico-chemical, morphological, antioxidant and antimicrobial properties of the prepared O/W nanoemulsions using response surface methodology (RSM). Results indicated that well dispersed and spherical ginger nanodroplets were formed in the nanoemulsions with minimum particle size (8.80 nm) and polydispersity index (PDI, 0.285) and maximum zeta potential value (−9.15 mV), using stirring rate and water addition rate of 736 rpm and 8.18 mL/min, respectively. Insignificant differences between predicted and experimental values of the response variables, indicated suitability of fitted models using RSM. Mean particle size of the prepared nanoemulsion using optimum conditions were changed from 8.81 ± 1 to 9.80 ± 1 nm, during 4 weeks of storage, which revealed high stability of the resulted ginger O/W nanoemulsion. High antioxidant activity (55.4%), bactericidal (against Streptococcus mutans) and fungicidal (against Aspergillus niger) activities of the prepared nanoemulsion could be related to the presence of gingerols and shogaols, a group of phenolic alkanones, in the ginger oil, which those were detected by gas chromatography method.


2011 ◽  
Vol 415-417 ◽  
pp. 617-620 ◽  
Author(s):  
Yan Su ◽  
Ying Yun Lin ◽  
Yu Li Fu ◽  
Fan Qian ◽  
Xiu Pei Yang ◽  
...  

Water-soluble gold nanoparticles (AuNPs) were prepared using 2-mercapto-4-methyl-5- thiazoleacetic acid (MMTA) as a stabilizing agent and sodium borohydride (NaBH4) as a reducing agent. The AuNPs product was analyzed by transmission electron microscopy (TEM), UV-vis absorption spectroscopy and Fourier transform infrared spectroscopy (FTIR). The TEM image shows that the particles were well-dispersed and their average particle size is about 5 nm. The UV-vis absorption and FTIR spectra confirm that the MMTA-AuNPs was stabilized by the carboxylate ions present on the surface of the AuNPs.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


Author(s):  
Is Fatimah ◽  
Putwi Widya Citradewi ◽  
Amri Yahya ◽  
Bambang Nugroho ◽  
Habibi Hidayat ◽  
...  

Abstract The composite of green synthesized gold nanoparticles (Au NPs)-doped hydroxyapatite (HA) has been prepared. The gold nanoparticles were produced via bioreduction of HAuCl4 with Clitoria ternatea flower extract, and utilized in the synthesis of hydroxyapatite using Ca(OH)2 and ammonium diphosphate as precursor. The aim of this research is to study the structural analysis of the composite and antibacterial activity test toward Eschericia coli, Staphylococcus aureus, Klebsiela pneumoniae, and Streptococcus pyogenes. In addition, the antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging method. The monitoring of gold nanoparticles formation was conducted by UV–vis spectroscopy and particle size analyses, meanwhile the synthesized composite was studied using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that homogeneously dispersed gold nanoparticles in HA structure was obtained with the particle size ranging at 5-80 nm. The nanocomposite demonstrated antibacterial activity against tested bacteria. The nanocomposite expressed an antioxidant activity as shown by the DPPH scavenging activity of 66 and 58% at the concentration of 100 μg/mL and 50 μg/mL, respectively.


Sign in / Sign up

Export Citation Format

Share Document