The ionic conductivity of alkali aluminum germanium phosphate glasses – comparison of Plasma CAIT with two electrode DC measurements

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jan L. Wiemer ◽  
Kevin Rein ◽  
Karl-Michael Weitzel

Abstract The ionic conductivity of alkali aluminum germanium phosphates (MAGP) has been investigated by two different techniques, i.) a fs-Plasma-Charge Attachment Induced Transport (CAIT) approach and ii.) a classical two electrode DC approach. Amorphous MAGP samples of the composition M1.5Al0.5Ge1.5(PO4)3 M=(Li–Cs) have been synthesized by the melt-quenching technique. Comparison of fs-Plasma-CAIT and DC data reveal that the ionic conductivities as well as the activation energies for ion transport agree within the error margins of the experiment. While conventional expectation suggests that a DC approach should fail because of spontaneous charge carrier blocking, this work demonstrates that DC measurements are a simple tool for quantifying ionic conductivities provided that only a small amount of charge has been transported in total.

2017 ◽  
Vol 14 (1) ◽  
pp. 9-14
Author(s):  
Eraiah B

The new glassesof glass system x Li 2 O-50 V 2 O 5 -(50-x) P 2 O 5 were prepared by using conventional melt quenching method. The densities of these glasses have been measured by Archimedes method and corresponding molar volumes have also been calculated. The conductivity of these glasses was measured as a function of temperature and composition. The variations of conductivity versus temperature follow Arrehenius type relationship. Conductivity decreases with increasing Li 2 O content and increase with increasing temperature. The calculated activation energy decreases up to 15mol% of Li 2 O, it increases from 15mol% to 30 mol% of Li 2 O and again it suddenly drops at 40 mol% of Li 2 O. This may be due to structural changes in glass network and these glasses exhibit both electronic and ionic conductivity.


2020 ◽  
Author(s):  
Saneyuki Ohno ◽  
Tim Bernges ◽  
Johannes Buchheim ◽  
Marc Duchardt ◽  
Anna-Katharina Hatz ◽  
...  

<p>Owing to highly conductive solid ionic conductors, all-solid-state batteries attract significant attention as promising next-generation energy storage devices. A lot of research is invested in the search and optimization of solid electrolytes with higher ionic conductivity. However, a systematic study of an <i>interlaboratory reproducibility</i> of measured ionic conductivities and activation energies is missing, making the comparison of absolute values in literature challenging. In this study, we perform an uncertainty evaluation via a Round Robin approach using different Li-argyrodites exhibiting orders of magnitude different ionic conductivities as reference materials. Identical samples are distributed to different research laboratories and the conductivities and activation barriers are measured by impedance spectroscopy. The results show large ranges of up to 4.5 mScm<sup>-1</sup> in the measured total ionic conductivity (1.3 – 5.8 mScm<sup>-1</sup> for the highest conducting sample, relative standard deviation 35 – 50% across all samples) and up to 128 meV for the activation barriers (198 – 326 meV, relative standard deviation 5 – 15%, across all samples), presenting the necessity of a more rigorous methodology including further collaborations within the community and multiplicate measurements.</p>


2008 ◽  
Vol 73 (12) ◽  
pp. 1777-1798 ◽  
Author(s):  
Olt E. Geiculescu ◽  
Rama V. Rajagopal ◽  
Emilia C. Mladin ◽  
Stephen E. Creager ◽  
Darryl D. Desmarteau

The present work consists of a series of studies with regard to the structure and charge transport in solid polymer electrolytes (SPE) prepared using various new bis(trifluoromethanesulfonyl)imide (TFSI)-based dianionic dilithium salts in crosslinked low-molecular-weight poly(ethylene glycol). Some of the thermal properties (glass transition temperature, differential molar heat capacity) and ionic conductivities were determined for both diluted (EO/Li = 30:1) and concentrated (EO/Li = 10:1) SPEs. Trends in ionic conductivity of the new SPEs with respect to anion structure revealed that while for the dilute electrolytes ionic conductivity is generally rising with increased length of the perfluoroalkylene linking group in the dianions, for the concentrated electrolytes the trend is reversed with respect to dianion length. This behavior could be the result of a combination of two factors: on one hand a decrease in dianion basicity that results in diminished ion pairing and an enhancement in the number of charge carriers with increasing fluorine anion content, thereby increasing ionic conductivity while on the other hand the increasing anion size and concentration produce an increase in the friction/entanglements of the polymeric segments which lowers even more the reduced segmental motion of the crosslinked polymer and decrease the dianion contribution to the overall ionic conductivity. DFT modeling of the same TFSI-based dianionic dilithium salts reveals that the reason for the trend observed is due to the variation in ion dissociation enthalpy, derived from minimum-energy structures, with respect to perfluoroalkylene chain length.


Inorganics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Xiaoxuan Luo ◽  
Aditya Rawal ◽  
Kondo-Francois Aguey-Zinsou

Nanoconfinement is an effective strategy to tune the properties of the metal hydrides. It has been extensively employed to modify the ionic conductivity of LiBH4 as an electrolyte for Li-ion batteries. However, the approach does not seem to be applicable to other borohydrides such as NaBH4, which is found to reach a limited improvement in ionic conductivity of 10−7 S cm−1 at 115 °C upon nanoconfinement in Mobil Composition of Matter No. 41 (MCM-41) instead of 10−8 S cm−1. In comparison, introducing large cage anions in the form of Na2B12H12 naturally formed upon the nanoconfinement of NaBH4 was found to be more effective in leading to higher ionic conductivities of 10−4 S cm−1 at 110 °C.


2016 ◽  
Vol 675-676 ◽  
pp. 376-379 ◽  
Author(s):  
Narun Luewarasirikul ◽  
Piyachat Meejitpaisan ◽  
Jakrapong Kaewkhao

Lanthanum calcium phosphate glasses doped with Eu3+ ions in compositions 20La2O3:10CaO:(70-x)P2O5:xEu2O3 (where x = 0.05, 0.10, 0.50 and 1.50 mol%) were prepared by melt-quenching technique. The density and molar volume measurements were carried out at room temperature. The absorption spectra were investigated in the UV-Vis-NIR region from 200 to 2500 nm. The emission spectra of Eu3+-doped glasses centered at 590 nm (5D0→7F1), 612 nm (5D0→7F2), 652 nm (5D0→7F3) and 699 nm (5D0→7F4) have been observed with 393 nm excitation wavelength.


2016 ◽  
Vol 18 (6) ◽  
pp. 4345-4351 ◽  
Author(s):  
Veronika Wesp ◽  
Matthias Hermann ◽  
Martin Schäfer ◽  
Jonas Hühn ◽  
Wolfgang J. Parak ◽  
...  

Low energy bombardment induced ion transport (BIIT) studies demonstrate that the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films depends non-monotonically on the number of bilayers.


1995 ◽  
Vol 393 ◽  
Author(s):  
B. Ma ◽  
J.-H. Park ◽  
C. U. Segre ◽  
U. Balachandran

ABSTRACTOxides in the Sr-Fe-Co-O system exhibit both electronic and ionic conductivities. Recently, the Sr-Fe-Co-O system attracted great attention because of its potential to be used for oxygen-permeable membranes that can operate without electrodes or external electrical circuitry. Electronic and ionic conductivities of two compositions of the Sr-Fe-Co-O system, named SFC-1 and SFC-2, have been measured at various temperatures. The electronic transference number is much greater than the ionic transference number in SFC-1, whereas the electronic and ionic transference numbers are very similar in SFC-2. At 800°C, the electronic and ionic conductivities are ≈76 and ≈4 S•cm−1, respectively, for SFC-1; whereas, for SFC-2, the electronic and ionic conductivities are ≈10 and ∼1 S•cm−1, respectively. By performing a local fitting to the equation σ • T = Aexp(-Ea / kT), we found that the oxide ion activation energies are 0.92 and 0.37 eV, respectively, for SFC-1 and SFC-2. The oxygen diffusion coefficient of SFC-2 is ≈ 9 x 10−7cm2/sec at 900°C.


2015 ◽  
Vol 1107 ◽  
pp. 449-453
Author(s):  
Ramli Arifin ◽  
Lee Pei San ◽  
Md Rahim Sahar ◽  
Sib Krishna Ghoshal ◽  
Khaidzir Hamzah

Glasses activated rare earth (RE) ions are demanding for photonic devices. Optimization of rare earth dopants, chemical composition of glass former and modifier decides spectra features. We synthesize a series of glass having composition (50-x)P2O5 - 30Li2O - 20Na2O - (x)Sm2O3, where x = 0 to 2.0 mol% (optimizing RE concentration) via melt-quenching technique. The effects of Sm2O3 concentration on significant enhancement of absorption and luminescence are scrutinized. The UV-Vis-NIR absorption spectra reveal ten band and the emission spectra exhibit four peaks specific to the dopant. The results suggest that samarium doped phosphate glasses are potential for laser and other applications.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1981
Author(s):  
Rafael Del Olmo ◽  
Nerea Casado ◽  
Jorge L. Olmedo-Martínez ◽  
Xiaoen Wang ◽  
Maria Forsyth

Mixed ionic-electronic conductors, such as poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) are postulated to be the next generation materials in energy storage and electronic devices. Although many studies have aimed to enhance the electronic conductivity and mechanical properties of these materials, there has been little focus on ionic conductivity. In this work, blends based on PEDOT stabilized by the polyelectrolyte poly(diallyldimethylammonium) (PolyDADMA X) are reported, where the X anion is either chloride (Cl), bis(fluorosulfonyl)imide (FSI), bis(trifluoromethylsulfonyl)imide (TFSI), triflate (CF3SO3) or tosylate (Tos). Electronic conductivity values of 0.6 S cm−1 were achieved in films of PEDOT:PolyDADMA FSI (without any post-treatment), with an ionic conductivity of 5 × 10−6 S cm−1 at 70 °C. Organic ionic plastic crystals (OIPCs) based on the cation N-ethyl-N-methylpyrrolidinium (C2mpyr+) with similar anions were added to synergistically enhance both electronic and ionic conductivities. PEDOT:PolyDADMA X / [C2mpyr][X] composites (80/20 wt%) resulted in higher ionic conductivity values (e.g., 2 × 10−5 S cm−1 at 70 °C for PEDOT:PolyDADMA FSI/[C2mpyr][FSI]) and improved electrochemical performance versus the neat PEDOT:PolyDADMA X with no OIPC. Herein, new materials are presented and discussed including new PEDOT:PolyDADMA and organic ionic plastic crystal blends highlighting their promising properties for energy storage applications.


Sign in / Sign up

Export Citation Format

Share Document