scholarly journals Effect of Different Onset Thresholds on Isometric Midthigh Pull Force-Time Variables

2017 ◽  
Vol 31 (12) ◽  
pp. 3463-3473 ◽  
Author(s):  
Thomas DosʼSantos ◽  
Paul A. Jones ◽  
Paul Comfort ◽  
Christopher Thomas
Keyword(s):  
Sports ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 63 ◽  
Author(s):  
Danny Lum ◽  
G. Gregory Haff ◽  
Tiago M. Barbosa

The purpose of this article was to review the data on the relationship between multi-joint isometric strength test (IsoTest) force-time characteristics (peak force, rate of force development and impulse) and dynamic performance that is available in the current literature. Four electronic databases were searched using search terms related to IsoTest. Studies were considered eligible if they were original research studies that investigated the relationships between multi-joint IsoTest and performance of dynamic movements; published in peer-reviewed journals; had participants who were athletes or active individuals who participate in recreational sports or resistance training, with no restriction on sex; and had full text available. A total of 47 studies were selected. These studies showed significant small to large correlations between isometric bench press (IBP) force-time variables and upper body dynamic performances (r2 = 0.221 to 0.608, p < 0.05) and significant small to very large correlation between isometric squat (ISqT) (r2 = 0.085 to 0.746, p < 0.05) and isometric mid-thigh pull (IMTP) (r2 = 0.120 to 0.941, p < 0.05) force-time variables with lower body dynamic performances. IsoTest force-time characteristics were shown to have small to very large correlations with dynamic performances of the upper and lower limbs as well as performance of sporting movements (r2 = 0.118 to 0.700, p < 0.05). These data suggest that IsoTest force-time characteristics provide insights into the force production capability of athletes which give insight into dynamic performance capabilities.


2020 ◽  
Vol 2 (4) ◽  
pp. 319-329 ◽  
Author(s):  
Sylvia Moeskops ◽  
Jon L. Oliver ◽  
Paul J. Read ◽  
John B. Cronin ◽  
Gregory D. Myer ◽  
...  

Abstract Purpose This cross-sectional study investigated dynamic force–time variables and vaulting performance in young female gymnasts of different maturity status. Methods 120 gymnasts aged 5–14 years were sub-divided into maturity groupings using percent of predicted adult height (%PAH) attained. Participants performed three jumping protocols, the squat jump (SJ), countermovement jump (CMJ) and drop jump (DJ), before completing straight jump vaults that were recorded using two-dimensional video. Results Jumping performance improved with biological maturity evidenced by the most mature gymnasts’ producing significantly more absolute force (P < 0.05; all d > 0.78), impulse (P < 0.05; all d > 0.75) and power (P < 0.05; all d > 0.91) than the least mature group, resulting in the greater jump heights (P < 0.05; all d > 0.70). While, no significant differences were observed in relative peak force across multiple tests, measures of relative peak power did significantly increase with maturity. Based upon regression analyses, maturation was found to influence vertical take-off velocity during vaulting, explaining 41% of the variance in each jumping protocol. Across all tests, the DJ was found to have the highest predictive ability of vaulting vertical take-off velocity, explaining 55% of the total variance. Conclusion Biological maturation impacts jump height and underpinning mechanical variables in young female gymnasts. Vaulting vertical take-off velocity appears to be influenced by maturation and various dynamic force–time variables, particularly those during DJ, which had the highest explained total variance.


2006 ◽  
Vol 38 (Supplement) ◽  
pp. S397-S398
Author(s):  
Brian K. Schilling ◽  
Jacque L. Barnes ◽  
Michael J. Falvo ◽  
Christopher A. Moore ◽  
Andrea K. Creasy ◽  
...  

Author(s):  
Mahdi Cheraghi ◽  
Javad Sarvestan ◽  
Masoud Sebyani ◽  
Elham Shirzad

The importance of vertical jump in sport fields and rehabilitation is widely recognized. Furthermore, Force-Time variables of vertical jump are factors affecting jumping height. Exclusive review of each of this variables, in eccentric and concentric phases, can lead to a specific focus on them during jumping exercises. So, the aims of his study were to a) reviewing the relationship between force-time curve variables of eccentric and concentric phases with jump height and b) description of this variables in Iran national youth volleyball players society. This is an observational study. 12 elite volleyball player (Male, Iran national youth volleyball players, 17&plusmn;0.7 years) have participated in this study. Correlation between Force-Time variables - included peak force (PF), relative peak force (RPP), peak power (PP), average power (AP), relative peak power (RPP), and Modified Reactive Strength Index (MRSI) - in eccentric and concentric phases and ultimate jump height has been studied. Results showed that the average power (r=0.7) and relative peak force (r=0.75) of concentric phase and MRSI (r=0.83) have significant correlation with ultimate jump height (JH). Relative peak power and average power of concentric phase can massively effect Jump Height in sports like volleyball, which vertical jump is an integral part of them. Focus on both of these factors, which has been studied in this research, in training programs, can improve athlete jump performance significantly.


2011 ◽  
Vol 25 (3) ◽  
pp. 867-871 ◽  
Author(s):  
Keir T Hansen ◽  
John B Cronin ◽  
Michael J Newton
Keyword(s):  

2006 ◽  
Vol 38 (Supplement) ◽  
pp. S515
Author(s):  
Jacque L. Barnes ◽  
Brian K. Schilling ◽  
Michael J. Falvo ◽  
Christopher A. Moore ◽  
Andrea K. Creasy ◽  
...  
Keyword(s):  

2019 ◽  
Vol 66 (1) ◽  
pp. 43-55 ◽  
Author(s):  
Gavin L. Moir ◽  
Aaron Getz ◽  
Shala E. Davis ◽  
Mário Marques ◽  
Chad A. Witmer

AbstractThe purposes of the present study were to assess the inter-session reliability of force-time variables recorded during isometric back squats and also to assess the effects of applying a filter to the data prior to analysis and assess the effects of different starting force thresholds on the force-time variables. Eleven resistance trained men (age: 22.5 ± 1.9 years; body mass: 90.3 ± 13.5 kg) attended two sessions where they performed isometric squats on force plates allowing the determination of force-time variables of maximal isometric force (Fmax) and different measures of the rate of force development (RFD). The force-time variables were calculated from both raw and filtered force signals. The start of the force application was determined using force thresholds of 1% or 5% of body mass (BM). Inter-session reliability for the force-time measures was assessed by calculating the intraclass correlation coefficient (ICC) and the coefficient of variation (CV) of the measures. The ICC and CV ranged from 0.03 to 0.96 and 4.6 to 168%, respectively. The application of the filter significantly reduced Fmax and peak RFD (p < 0.004) and increased the reliability of the peak RFD. The use of the 5% BM threshold increased the magnitude of many of the RFD measures (p < 0.004) and resulted in slight improvements in the reliability of these measures although the resulting temporal shift in the force-time signal would preclude accurate assessment of the early phase of the RFD (< 100 ms). The use of a 1% BM starting force threshold without a filter is recommended when using the isometric back squat protocol presented here. Furthermore, the RFD calculated within specific time intervals is recommended


Sign in / Sign up

Export Citation Format

Share Document