Session Rating of Perceived Exertion Is Different for Similar Intensity and Duration Prescribed Low-Intensity Sessions and Has a Different Effect on Performance in Young Cross-Country Skiers

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Rasmus Pind ◽  
Priit Purge ◽  
Evelin Mäestu ◽  
Eno Vahtra ◽  
Peter Hofmann ◽  
...  
Author(s):  
Erik P. Andersson ◽  
Irina Hämberg ◽  
Paulo Cesar Do Nascimento Salvador ◽  
Kerry McGawley

Abstract Purpose This study aimed to compare physiological factors and cycle characteristics during cross-country (XC) roller-skiing at matched inclines and speeds using the double-poling (DP) and diagonal-stride (DS) sub-techniques in junior female and male XC skiers. Methods Twenty-three well-trained junior XC skiers (11 women, 12 men; age 18.2 ± 1.2 yr.) completed two treadmill roller-skiing tests in a randomized order using either DP or DS. The exercise protocols were identical and included a 5 min warm-up, 4 × 5 min submaximal stages, and an incremental test to exhaustion, all performed at a 5° incline. Results No significant three-way interactions were observed between sex, submaximal exercise intensity, and sub-technique. For the pooled sample, higher values were observed for DP versus DS during submaximal exercise for the mean oxygen uptake kinetics response time (33%), energy cost (18%), heart rate (HR) (9%), blood lactate concentration (5.1 versus 2.1 mmol·L−1), rating of perceived exertion (12%), and cycle rate (25%), while cycle length was lower (19%) (all P < 0.001). During the time-to-exhaustion (TTE) test, peak oxygen uptake ($$\dot{V}$$ V ˙ O2peak), peak HR, and peak oxygen pulse were 8%, 2%, and 6% lower, respectively, for DP than DS, with a 29% shorter TTE during DP (pooled data, all P < 0.001). Conclusion In well-trained junior XC skiers, DP was found to exert a greater physiological load than DS during uphill XC roller-skiing at submaximal intensities. During the TTE test, both female and male athletes were able to ski for longer and reached markedly higher $$\dot{V}$$ V ˙ O2peak values when using DS compared to DP.


2017 ◽  
Vol 12 (10) ◽  
pp. 1370-1377 ◽  
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Hamit Cihan ◽  
Del P. Wong

Purpose: To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Methods: Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La−) were determined at the end of each SSG. Results: The SBD format elicited significantly lower %HRmax responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La− and RPE responses than SBD and CON in all formats (P < .05). Conclusions: These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.


2018 ◽  
Vol 13 (7) ◽  
pp. 940-946 ◽  
Author(s):  
Farhan Juhari ◽  
Dean Ritchie ◽  
Fergus O’Connor ◽  
Nathan Pitchford ◽  
Matthew Weston ◽  
...  

Context: Team-sport training requires the daily manipulation of intensity, duration, and frequency, with preseason training focusing on meeting the demands of in-season competition and training on maintaining fitness. Purpose: To provide information about daily training in Australian football (AF), this study aimed to quantify session intensity, duration, and intensity distribution across different stages of an entire season. Methods: Intensity (session ratings of perceived exertion; CR-10 scale) and duration were collected from 45 professional male AF players for every training session and game. Each session’s rating of perceived exertion was categorized into a corresponding intensity zone, low (<4.0 arbitrary units), moderate (≥4.0 and <7.0), and high (≥7.0), to categorize session intensity. Linear mixed models were constructed to estimate session duration, intensity, and distribution between the 3 preseason and 4 in-season periods. Effects were assessed using linear mixed models and magnitude-based inferences. Results: The distribution of the mean session intensity across the season was 29% low intensity, 57% moderate intensity, and 14% high intensity. While 96% of games were high intensity, 44% and 49% of skills training sessions were low intensity and moderate intensity, respectively. Running had the highest proportion of high-intensity training sessions (27%). Preseason displayed higher training-session intensity (effect size [ES] = 0.29–0.91) and duration (ES = 0.33–1.44), while in-season game intensity (ES = 0.31–0.51) and duration (ES = 0.51–0.82) were higher. Conclusions: By using a cost-effective monitoring tool, this study provides information about the intensity, duration, and intensity distribution of all training types across different phases of a season, thus allowing a greater understanding of the training and competition demands of Australian footballers.


2020 ◽  
Vol 15 (8) ◽  
pp. 1081-1086
Author(s):  
Jordan L. Fox ◽  
Cody J. O’Grady ◽  
Aaron T. Scanlan

Purpose: To investigate the relationships between external and internal workloads using a comprehensive selection of variables during basketball training and games. Methods: Eight semiprofessional, male basketball players were monitored during training and games for an entire season. External workload was determined as PlayerLoad™: total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events. Internal workload was determined using the summated-heart-rate zones and session rating of perceived exertion models. The relationships between external and internal workload variables were separately calculated for training and games using repeated-measures correlations with 95% confidence intervals. Results: PlayerLoad was more strongly related to summated-heart-rate zones (r = .88 ± .03, very large [training]; r = .69 ± .09, large [games]) and session rating of perceived exertion (r = .74 ± .06, very large [training]; r = .53 ± .12, large [games]) than other external workload variables (P < .05). Correlations between total and high-intensity accelerations, decelerations, changes of direction, and jumps and total low-intensity, medium-intensity, high-intensity, and overall inertial movement analysis events and internal workloads were stronger during training (r = .44–.88) than during games (r = .15–.69). Conclusions: PlayerLoad and summated-heart-rate zones possess the strongest dose–response relationship among a comprehensive selection of external and internal workload variables in basketball, particularly during training sessions compared with games. Basketball practitioners may therefore be able to best anticipate player responses when prescribing training drills using these variables for optimal workload management across the season.


2021 ◽  
Vol 3 ◽  
Author(s):  
Linda Marie Hansen ◽  
Øyvind Sandbakk ◽  
Gertjan Ettema ◽  
Julia Kathrin Baumgart

Purpose: To investigate the interaction between exercise modality (i.e., upper- and lower-body exercise) and sex in physiological responses and power output (PO) across the entire intensity spectrum (i.e., from low to maximal intensity).Methods: Ten male and 10 female cross-country (XC) skiers performed a stepwise incremental test to exhaustion consisting of 5 min stages with increasing workload employing upper-body poling (UP) and running (RUN) on two separate days. Mixed measures ANOVA were performed to investigate the interactions between exercise modalities (i.e., UP and RUN) and sex in physiological responses and PO across the entire exercise intensity spectrum.Results: The difference between UP and RUN (ΔUP−RUN), was not different in the female compared with the male XC skiers for peak oxygen uptake (18 ± 6 vs. 18 ± 6 mL·kg−1·min−1, p = 0.843) and peak PO (84 ± 18 vs. 91 ± 22 W, p = 0.207). At most given blood lactate and rating of perceived exertion values, ΔUP−RUN was larger in the male compared with the female skiers for oxygen uptake and PO, but these differences disappeared when the responses were expressed as % of the modality-specific peak.Conclusion: Modality-differences (i.e., ΔUP−RUN) in peak physiological responses and PO did not differ between the female and male XC skiers. This indicates that increased focus on upper-body strength and endurance training in female skiers in recent years may have closed the gap between upper- and lower-body endurance capacity compared with male XC skiers. In addition, no sex-related considerations need to be made when using relative physiological responses for intensity regulation within a specific exercise modality.


Author(s):  
Micah C. Garcia ◽  
Brett S. Pexa ◽  
Kevin R. Ford ◽  
Mitchell J. Rauh ◽  
David M. Bazett-Jones

Abstract Context: Running programs traditionally monitor external loads (e.g., time, distance). There has been a recent movement to encompass a more comprehensive approach to also monitor training loads that account for internal loads (e.g., intensity, measured as session rating of perceived exertion [sRPE]). The combination of an external and internal load accounts for the potential interaction between these loads. While differences in weekly change in training loads have been reported between external loads and the combination of an external and internal load during 2- and 4-week training cycles, there are no reports whether these differences are apparent during an entire cross-country season in high school runners. Objective: To compare change in training loads, as measured by external loads and combinations of an external and internal load, in high school runners during an interscholastic cross-country season. Design: Case-series. Setting: Community-based with daily online surveys. Participants: Twenty-four high school cross-country runners (female=14, male=10, age=15.9±1.1 years, running experience=9.9±3.2 years). Main Outcome Measure(s): Week-to-week percent change in training load when measured by external loads (time, distance) and the combination of an external and internal load (timeRPE, distanceRPE). Results: Overall, the average weekly change was 7.1% greater for distanceRPE compared to distance (p=.04, d=0.18). When decreasing weekly running duration, the average weekly change was 5.2% greater for distanceRPE compared to timeRPE (p=.03, d=0.24). When maintaining or increasing weekly running duration, the average weekly change was 10–15% greater when an external load was combined with an internal load compared to external loads alone, but these differences were non- significant (p=.11–.22, d=0.19–0.34). Conclusions: Our results demonstrate that progression in training load may be underestimated when relying solely on external loads. The interaction between internal loads (sRPE) and external loads (distance or time) appears to provide a different measure of training stresses experienced by runners than external loads alone.


2020 ◽  
Vol 15 (3) ◽  
pp. 383-389 ◽  
Author(s):  
Bent R. Rønnestad ◽  
Tue Rømer ◽  
Joar Hansen

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute effect of a roller-ski skating session containing work intervals with a fast start followed by decreasing speed (DEC) with a traditional session where the work intervals had a constant speed (similar to the mean speed of DEC; TRAD) on physiological responses, rating of perceived exertion, and leg press peak power. Methods: A total of 11 well-trained cross-country skiers performed DEC and TRAD in a randomized order (5 × 5-min work intervals, 3-min relief). Each 5-minute work interval in the DEC protocol started with 1.5 minutes at 100% of maximal aerobic speed followed by 3.5 minutes at 85% of maximal aerobic speed, whereas the TRAD protocol had a constant speed at 90% of maximal aerobic speed. Results: DEC induced a higher VO2 than TRAD, measured as both peak and average of all work intervals during the session (98.2% [2.1%] vs 95.4% [3.1%] VO2peak, respectively, and 87.6% [1.9%] vs 86.1% [3.2%] VO2peak, respectively) with a lower mean rating of perceived exertion after DEC than TRAD (16.1 [1.0] vs 16.5 [0.7], respectively) (all P < .05). There were no differences between sessions for mean heart rate, blood lactate concentration, or leg press peak power. Conclusion: DEC induced a higher mean VO2 and a lower rating of perceived exertion than TRAD, despite similar mean speed, indicating that DEC can be a good strategy for interval sessions aiming to accumulate more time at a high percentage of VO2peak.


Author(s):  
Sabrina Demarie ◽  
Christel Galvani ◽  
Veronique Louise Billat

The aim of the present study was to quantify the impact of training restrictions, due to COVID-19 sanitary emergency, on physical and emotional strain of horse-riding Eventing competitions before and after eight weeks of lockdown. Performance was assessed by the penalty points attained, anxiety by the Competitive State Anxiety Inventory-2, strain by the Rating of Perceived Exertion (RPE) method. Moreover, Heart Rate was continuously monitored for fifty-four female national level Eventing horse-riders. Lockdown decreased performance outcome of horse-riders in Eventing competitions up to six weeks, with the Dressage test being the most affected discipline. Performance in Dressage was strongly related to both anxiety and session-RPE. After lockdown, Show-Jumping and Cross-Country courses were shorter allowing RPE to remain stable, session-RPE to significantly decline and cardiovascular strain not to exceed pre-lockdown values. In conclusion, emotional stress in Dressage and workload in Cross-Country should be carefully managed by equestrian Eventing stakeholders when planning training and competitions after a period of lockdown. Moreover, sRPE appears to offer a practical method of monitoring riders load during training and competition and could also be of use for home-based training during any future sport activities restrictions.


2019 ◽  
Vol 14 (10) ◽  
pp. 1331-1337 ◽  
Author(s):  
Aaron T. Scanlan ◽  
Robert Stanton ◽  
Charli Sargent ◽  
Cody O’Grady ◽  
Michele Lastella ◽  
...  

Purpose: To quantify and compare internal and external workloads in regular and overtime games and examine changes in relative workloads during overtime compared with other periods in overtime games in male basketball players. Methods: Starting players for a semiprofessional male basketball team were monitored during 2 overtime games and 2 regular games (nonovertime) with similar contextual factors. Internal (rating of perceived exertion and heart-rate variables) and external (PlayerLoad and inertial movement analysis variables) workloads were quantified across games. Separate linear mixed-models and effect-size analyses were used to quantify differences in variables between regular and overtime games and between game periods in overtime games. Results: Session rating-of-perceived-exertion workload (P = .002, effect size 2.36, very large), heart-rate workload (P = .12, 1.13, moderate), low-intensity change-of-direction events to the left (P = .19, 0.95, moderate), medium-intensity accelerations (P = .12, 1.01, moderate), and medium-intensity change-of-direction events to the left (P = .10, 1.06, moderate) were higher during overtime games than during regular games. Overtime periods also exhibited reductions in relative PlayerLoad (first quarter P = .03, −1.46, large), low-intensity accelerations (first quarter P = .01, −1.45, large; second quarter P = .15, −1.22, large), and medium-intensity accelerations (first quarter P = .09, −1.32, large) compared with earlier periods. Conclusions: Overtime games disproportionately elevate perceptual, physiological, and acceleration workloads compared with regular games in starting basketball players. Players also perform at lower external intensities during overtime periods than earlier quarters during basketball games.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rasmus Pind ◽  
Peter Hofmann ◽  
Evelin Mäestu ◽  
Eno Vahtra ◽  
Priit Purge ◽  
...  

Purpose: The aim of this study was to investigate the interaction of training load quantification using heart rate (HR) and rating of perceived exertion (RPE)-based methodology, and the relationship between internal training load parameters and subjective training status (Fatigue) in high-level rowers during volume increased low-intensity training period.Methods: Training data from 19 high-level rowers (age 23.5 ± 5.9 years; maximal oxygen uptake 58.9 ± 5.8 ml·min−1·kg−1) were collected during a 4-week volume increased training period. All individual training sessions were analyzed to quantify training intensity distribution based on the HR time-in-zone method (i.e., HR Z1, HR Z2, and HR Z3) determined by the first and second ventilatory thresholds (VT1/VT2). Internal training load was calculated using session RPE (sRPE) to categorize training load by effort (i.e., sRPE1, sRPE2, and sRPE3). The Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) questionnaire was implemented after every week of the study period.Results: No differences were found between the respective HR and effort-based zone distributions during the baseline week (p &gt; 0.05). Compared to HR Z1, sRPE1 was significantly lower in weeks 2–4 (p &lt; 0.05), while sRPE2 was higher in weeks 2–3 compared to HR Z2 (p &lt; 0.05) and, in week 4, the tendency (p = 0.06) of the higher amount of sRPE3 compared to HR Z3 was found. There were significant increases in RESTQ-Sport stress scales and decreases in recovery scales mostly during weeks 3 and 4. Increases in the Fatigue scale were associated with the amounts of sRPE2 and sRPE3 (p = 0.011 and p = 0.008, respectively), while no associations with Fatigue were found for HR-based session quantification with internal or external training load variables.Conclusion: During a low-intensity 4-week training period with increasing volume, RPE-based training quantification indicated a shift toward the harder rating of sessions with unchanged HR zone distributions. Moderate and Hard rated sessions were related to increases in Fatigue. Session rating of perceived exertion and effort-based training load could be practical measures in combination with HR to monitor adaptation during increased volume, low-intensity training period in endurance athletes.


Sign in / Sign up

Export Citation Format

Share Document