Shear Modulus and Damping Ratio of Unsaturated Kaolin Measured by New Suction-Controlled Cyclic Triaxial Device

2011 ◽  
Vol 34 (5) ◽  
pp. 103635 ◽  
Author(s):  
L. D. Suits ◽  
T. C. Sheahan ◽  
Mahnoosh Biglari ◽  
Mohammad Kazem Jafari ◽  
Ali Shafiee ◽  
...  
2002 ◽  
Vol 39 (5) ◽  
pp. 1201-1208 ◽  
Author(s):  
Supot Teachavorasinskun ◽  
Pipat Thongchim ◽  
Panitan Lukkunaprasit

The shear modulus and damping ratio of undisturbed Bangkok clay samples were measured using a cyclic triaxial apparatus. Although abundant literature on this topic exists, selection of the most suitable empirical correlation for a seismic analysis cannot be done unless site specific data are obtained. The apparatus used in this research can measure the stress–strain relationships from strain levels of about 0.01%. The equivalent shear modulus measured at these strains was about 80% of the value obtained from the shear wave velocity measurements. The degradation curves of the equivalent shear modulus fell into the ranges reported in the literature, for clay having similar plasticity. The damping ratios varied from about 4–5% at small strains (0.01%) to about 25–30% at large strains (10%). The effects of load frequency and cyclic stress history on the shear modulus and damping ratio were also investigated. An increase in load frequency from 0.1 to 1.0 Hz had no influence on the shear modulus characteristic, but it did result in a slight decrease in the damping ratio. The effects of the small amplitude cyclic stress history on the subsequently measured shear modulus and damping ratio were almost negligible when the changes in void ratio were taken into account.Key words: soft clay, shear modulus, damping ratio, cyclic triaxial test, cyclic stress history.


2019 ◽  
Vol 92 ◽  
pp. 08007
Author(s):  
Alper Sezer ◽  
Eyyub Karakan ◽  
Nazar Tanrinian

Site response analyses and solution of dynamic soil-structure interaction problems need determination of variation of shear modulus and damping ratio with shear strain. Since many studies in literature concern evaluation of behavior of sands and silty sands, a series of cyclic triaxial tests were performed to determine the variation of shear modulus and damping ratio of a nonplastic silt with shear strain. Stress controlled cyclic triaxial tests on silt specimens of initial relative densities ranging among 30%, 50% and 70% were performed. Tests were carried out on identical samples under different CSR levels, and the confining pressure was selected as 100 kPa. Variation of shear modulus and damping ratio of silts with cyclic stress ratio amplitude, relative density and number of cycles were investigated. It was understood that soil relative density and cyclic stress ratio amplitude has a significant influence on shear modulus and damping ratio of silts. It was also observed that, as the cyclic stress ratio amplitude is increased, greater shear modulus and lower damping ratio values were obtained.


2012 ◽  
Vol 06 (04) ◽  
pp. 1250016
Author(s):  
V. JAYA ◽  
G. R. DODAGOUDAR ◽  
A. BOOMINATHAN

Adequate information on dynamic soil properties, especially strain dependent shear modulus (G) and damping ratio (ξ) for each soil layer are the essential input data for seismic ground response analysis and soil-structure interaction studies. In the present study, the shear modulus and damping ratio of sand are estimated for a wide range of strains based on undrained strain-controlled cyclic triaxial tests. The bender elements are also utilized in the cyclic triaxial test to estimate the low strain shear modulus. For this purpose, the soil samples are taken from a nuclear power plant site located at the south-east coastal region of India. Based on the experimental results, an empirical expression is developed to calculate the maximum shear modulus, G max as function of void ratio and effective confining stress. Predictive relationships are also developed for estimating normalized shear modulus and damping ratio curves for the sand. The predictive relationships are based on the hyperbolic model and cyclic triaxial test results. The developed modulus reduction and damping ratio curves from the predictive relationships are compared with the previously available curves in the literature.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2018 ◽  
Vol 36 (5) ◽  
pp. 3159-3171 ◽  
Author(s):  
Hirochika Hayashi ◽  
Takahiro Yamanashi ◽  
Hijiri Hashimoto ◽  
Masahiko Yamaki

2012 ◽  
Vol 204-208 ◽  
pp. 557-561
Author(s):  
Hong Yan Xi ◽  
Jun Hua Zhang ◽  
Jing Sun ◽  
Jing Li ◽  
You Qing Wang ◽  
...  

Strong earthquake ground motion leads to residual displacements of gravity retaining walls. Since large deformation occurs in foundation soil, nonlinear mechanical behavior should not be neglected in numerical modeling. The inversion methodology in geophysics is borrowed here to study the nonlinearity, i.e. the variation of shear modulus and damping ratio with the increase of shear strain of soil. A simplified model for the seismic displacement of retaining walls is combined with a genetic algorithm for the inversion. The dynamic shear modulus and damping ratio curves, representing the nonlinear property of foundation soil in a centrifuge test for gravity retaining walls, is obtained by the use of an inversion scheme. The result indicates that, for low level of shear strain, the shear modulus is larger than that used in the literature, implying that the model ground may be stiffer than expectation. For high level of shear strain, the inverted damping ratio is larger than the conventional one, which has efficiently suppressed an overestimation of seismic displacements. It is also displayed that the inversion method is an effective way to obtain quantitatively the dynamic nonlinearity of foundation soil of gravity retaining walls.


Sign in / Sign up

Export Citation Format

Share Document