Stress–Strain–Electrical Evolution Properties and Damage-Evolution Equation of Lateritic Soil Under Uniaxial Compression

2016 ◽  
Vol 45 (4) ◽  
pp. 20150237 ◽  
Author(s):  
W. Bai ◽  
L.-W. Kong ◽  
A.-G. Guo ◽  
R.-B. Lin
2013 ◽  
Vol 353-356 ◽  
pp. 379-383 ◽  
Author(s):  
Gen Bo Yu ◽  
Peng Yang ◽  
Ying Zhou Chen

Under the premise of isotropic and continuum cemented tailings and damage proportional to the external doing work, the damage evolution equation and damage evolution constitutive equation were derived by using the strain equivalent principle. Under the consideration of the damage also transferring stress when uniaxial compression, the damage corrected parameter was introduced to obtain the damage evolution constitutive equation containing corrected parameter. Based on the experimental data from the uniaxial compression of cemented tailing, this article validates the theoretical curves consist with the experimental ones under certain damage corrected parameter.


2011 ◽  
Vol 488-489 ◽  
pp. 464-467
Author(s):  
Ji Ze Mao ◽  
Zhi Yuan Zhang ◽  
Zong Min Liu ◽  
Chao Sun

With the development of damage mechanics, many researchers have used it to analyze the constitutive equation of concrete. Since the special environment in the cold marine regions, the offshore structures are common to subject to the comprehensive effects of freeze-thaw action and chloride erosion. This might cause concrete materials degradation and reduce the mechanical performance of concrete seriously. In this paper, based on the analysis and mechanical experiments of concrete materials under the comprehensive effects of freeze-thaw action and chloride ion erosion, the damage evolution equation of concrete elastic modulus along with the freeze-thaw cycles and chloride ion contents was established. The effects of chloride ion were investigated during the process of concrete degradation. According to the damage evolution equation, a new constitutive equation of concrete under freeze-thaw action and chloride erosion was established. And then, by means of the element simulation analysis of concrete beams when subjected to the comprehensive actions, the feasibility and applicability of the equation was examined and discussed. In this equation, both the freeze-thaw action and chloride ion erosion were considered together. It will be more suitable for analyzing the durability of concrete structures in the real cold marine regions. It will also provide some references for concrete constitutive theory.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bin Xu ◽  
Xiaoyan Lei ◽  
P. Wang ◽  
Hui Song

There are various definitions of damage variables from the existing damage models. The calculated damage value by the current methods still could not well correspond to the actual damage value. Therefore, it is necessary to establish a damage evolution model corresponding to the actual damage evolution. In this paper, a strain rate-sensitive isotropic damage model for plain concrete is proposed to describe its nonlinear behavior. Cyclic uniaxial compression tests were conducted on concrete samples at three strain rates of 10−3s−1, 10−4s−1, and 10−5s−1, respectively, and ultrasonic wave measurements were made at specified strain values during the loading progress. A damage variable was defined using the secant and initial moduli, and concrete damage evolution was then studied using the experimental results of the cyclic uniaxial compression tests conducted at the different strain rates. A viscoelastic stress-strain relationship, which considered the proposed damage evolution model, was presented according to the principles of irreversible thermodynamics. The model results agreed well with the experiment and indicated that the proposed damage evolution model can accurately characterize the development of macroscopic mechanical weakening of concrete. A damage-coupled viscoelastic constitutive relationship of concrete was recommended. It was concluded that the model could not only characterize the stress-strain response of materials under one-dimensional compressive load but also truly reflect the degradation law of the macromechanical properties of materials. The proposed damage model will advance the understanding of the failure process of concrete materials.


2008 ◽  
Vol 33-37 ◽  
pp. 663-668
Author(s):  
Quan Sheng Liu ◽  
Bin Liu ◽  
Wei Gao

This paper introduces the principle of minimum energy dissipation and its general procedures to establish development equation of internal variable. With the accepted viewpoint that the damage is only mechanics of energy dissipation during the rockburst and utilizing the total strength criterion based on released strain energy, the general damage evolution equation is deduced. Compared with the traditional research method of damage evolution equation, this method has universal and objective characteristics.


2009 ◽  
Vol 610-613 ◽  
pp. 831-837
Author(s):  
Mei Juan Song ◽  
Ling Yun Wang ◽  
Rao Chuan Liu ◽  
Zhi Xiang Wang

After superplastic tensile tests and quantitative analysis of cavity volume fraction, the damage evolution equation based on the law of the micro-damage evolution and statistical mechanics was derived out. The characteristic parameters of damage evolvement and critical value of damage variables are achieved from the experiments.


2011 ◽  
Vol 20 (8) ◽  
pp. 1243-1262 ◽  
Author(s):  
M. Jie ◽  
C. L. Chow ◽  
X. Wu

A method of forming limit prediction for sheet metals at high temperatures and under nonproportional loading is presented. The method takes into account the strain-softening behaviors of the material at elevated temperatures. A localized necking criterion based on an isotropic damage-coupled acoustic tensor is developed and employed to determine the forming limits of strain-softening materials. The damage evolution equation is developed within the thermo-mechanical framework. A closed-form expression of the forming limit strains is derived by coupling the damage evolution equation into the localized necking criterion. A computer program, incorporating the incremental theory of plasticity, the damage evolution equation and the localized necking criterion, is developed to compute the forming limit strains under several nonproportional loading paths. A series of the uniaxial tensile tests is performed to measure the relevant mechanical properties of AA6061 at the elevated temperature of 450°C. The material damage variables are determined from the measured elastic modulii from a series of loading and unloading paths. The damage evolution equation of AA6061 at 450°C is formulated based on the test data. The computed limit strains are compared with the test results under various loading paths and a good agreement is observed. It is found that the critical damage value is independent on the stress states and loading paths. It may be concluded that the application of the material damage as a reliable criterion of localized necking including the nonproportional loading cases.


2013 ◽  
Vol 750-752 ◽  
pp. 2196-2199
Author(s):  
Zhi Xu Gu ◽  
Jian Zheng ◽  
Wei Peng ◽  
Xi Nan Tang ◽  
Jun Hui Yin

This paper studies the damage process induced by dewetting microcracks in composite solid propellant. A nonlinear viscoelastic constitutive model for composite soild propellant is presented. The damage variable D is derived from the microcrack system and is function of microcrack size density. The damage evolution equation is determinded by the extending of microcrack. Form the proposed model of microrack evolution process, an explicit form of damage evolution equation which is a function of stress field is given. The cracking event N and the new crack surface area damage ΔA formed by microcrack extension are defined. Material constants are determinded by acoustic emission tests. The rationality of our model has been confirmed by tension tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaolou Chi ◽  
Ke Yang ◽  
Zhen Wei

To explore the energy dissipation mechanism and damage evolution characteristics of rock specimens under compressive loading, we performed the acoustic emission (AE) testing under uniaxial compression in intact rock specimens and those with large-scale prefabricated cracks. The basic mechanical properties of both types of specimens were analyzed comprehensively, and the evolution patterns of strain energy indicators (total strain, elastic, and dissipative energies) in rock specimens before the peak on the stress-strain curve were identified. We further revealed the effect of the prefabricated crack dip angle, which controlled the surplus energy conversion of the following peak deformation and failure in the rock specimens. Using the modified equation of rock specimen damage evolution characterized by the AE energy and examining the fracture surface morphology via the scanning electron microscopy (SEM), the AE distribution law for rock specimen damage was revealed. An increase in the prefabricated crack dip angle was shown to reduce the peak stress and strain of rock specimens, which experienced a transition from the tensile and splitting failure mode to shear and slip one. Cracked rock specimens exhibited strain energy accumulation at the elastic deformation stage of the stress-strain diagram and rapid energy consumption at the plastic stage. By contrast, the intact rock specimens had a smoother energy evolution pattern. As the prefabricated crack dip angle increased, the dissipated and surplus strain energies’ shares increased. Moreover, the first peak of the AE energy occurred earlier, and the stress needed for its occurrence decreased as the dip angle increased. According to the damage evolution equation for rock specimens, their damage process can be subdivided into the initial damage, stable damage increase, and the accelerating damage increase stages. An increase in the prefabricated crack dip angle accelerated the damage accumulation in rock specimens. The locking effect of the sawtooth-like structures on the fracture surface was less conspicuous, and the fracture surface roughness increased. Thus, microcracks gradually developed, and rock specimens became more susceptible to sudden unstable failure.


Sign in / Sign up

Export Citation Format

Share Document