Influence of Nozzle Type, Speed, and Pressure on Droplet Size and Weed Control from Glyphosate, Dicamba, and Glyphosate Plus Dicamba

Author(s):  
Andre O. Rodrigues ◽  
Lucas G. Campos ◽  
Cody F. Creech ◽  
Bradley K. Fritz ◽  
Ulisses R. Antuniassi ◽  
...  
1997 ◽  
Vol 11 (4) ◽  
pp. 639-643 ◽  
Author(s):  
Thomas C. Mueller ◽  
Alvin R. Womac

When spray mixtures were examined using a laser spray droplet analyzer, the new isopropylamine glyphosate formulation produced more small droplets than a previous isopropylamine salt of glyphosate formulation or glyphosate–trimesium plus nonionic surfactant. The use of a pre-orifice flat-fan nozzle and an impact type flat-fan nozzle reduced the amount of small droplets produced compared to an existing extended range flat-fan nozzle, while maintaining a spray droplet distribution that could still provide good weed control. The new nozzle technologies could provide a useful management tool to manage potential drift situations.


2018 ◽  
Vol 61 (6) ◽  
pp. 1881-1888
Author(s):  
Jeng-Liang Lin ◽  
Heping Zhu

Abstract. Understanding reactions of surfactant-amended droplets on difficult-to-wet weed surfaces could help develop application strategies to increase herbicide efficacy. Behaviors of herbicidal droplets containing different emulsifiable anti-evaporation spray adjuvants were investigated by characterizing 250 and 450 µm herbicidal droplet dispersion and fading time on cucurbitaceous leaves placed inside a 20°C chamber at 30% and 60% relative humidity (RH). Droplet maximum coverage area increased with droplet size but not with RH, while droplet fading time increased with both droplet size and RH. Despite 450 µm droplets having greater maximum coverage area than 250 µm droplets, the larger droplets had higher fading rates and lower ratios of maximum coverage area to droplet volume. Droplet maximum coverage area and fading time on leaves were affected by adding spray adjuvants to the herbicide-only solution. The Uptake surfactant was more effective than the other two surfactants (AntiEvap+BS1000 and Enhance) in increasing droplet maximum coverage area and fading time. Compared to the herbicide-only solution, addition of Uptake surfactant to the herbicide solution could increase maximum coverage area by 68% and 52% for 250 and 450 µm droplets, respectively, but addition of AntiEvap+BS1000 or Enhance surfactants did not show significant increase. Similarly, addition of Uptake surfactant to the herbicide-only solution increased droplet fading times by 11.1% and 13.2% at 30% and 60% RH, respectively, for 250 µm droplets and by 34.7% and 2.8% at 30% and 60% RH, respectively, for 450 µm droplets. In contrast, addition of AntiEvap+BS1000 surfactant reduced fading time, and addition of Enhance surfactant did not significantly affect fading time. Therefore, appropriate selection of spray adjuvants for herbicide applications could significantly influence droplet deposit behaviors on cucurbitaceous leaves, leading to improved effectiveness of weed control. Keywords: Herbicide application, Spray deposition, Spray droplet, Surfactant, Weed control.


2013 ◽  
Vol 27 (4) ◽  
pp. 649-655 ◽  
Author(s):  
Catherine P. D. Borger ◽  
Glen P. Riethmuller ◽  
Michael Ashworth ◽  
David Minkey ◽  
Abul Hashem ◽  
...  

PRE herbicides are less effective in the zero-tillage system because of increased residual crop stubble and reduced soil incorporation. However, since weeds are not physically controlled in the zero-tillage system, reliance on efficacy of PRE herbicides is increased. This research investigated the impact of carrier volume and droplet size on the performance of PRE herbicides (in wheat crops at four sites in 2010) to improve herbicide efficacy in conditions of high stubble biomass in zero-tillage systems. Increasing carrier volume from 30 to 150 L ha−1increased spray coverage on water-sensitive paper from an average of 5 to 32%. Average control of rigid ryegrass by trifluralin (at Cunderdin and Merredin sites) and trifluralin or pyroxasulfone (at Wickepin and Esperance sites) improved from 53 to 78% with increasing carrier volume. Use of ASABE Medium droplet size improved spray coverage compared with ASABE Extremely Coarse droplet size, but did not affect herbicide performance. It is clear that increased carrier volume improves rigid ryegrass weed control for nonwater-soluble (trifluralin) and water-soluble (pyroxasulfone) PRE herbicides. Western Australian growers often use low carrier volumes to reduce time of spray application or because sufficient high-quality water is not available, but the advantages of improved weed control justifies the use of a high carrier volume in areas of high weed density.


Author(s):  
Mustapha Chaker ◽  
Cyrus B. Meher-Homji

Several gas turbine power augmentation techniques are available to counter the detrimental drop in power and thermal efficiency that occur at high ambient temperatures. Inlet fogging and wet compression are two common and relatively simple techniques. This paper addresses the influence and importance of droplet size on evaporative cooling performance and efficiency. Spray nozzles used for inlet fogging and wet compression include impaction pin, swirl jet, air assisted, and swirl flash nozzle designs. The evaporation efficiency of the atomized droplets from these nozzles depends on the droplet size, size distribution, and spray plume shape. Droplets size varies with nozzle type, configuration, operating conditions, and nozzle manifold location in the gas turbine inlet duct and are affected by airflow velocity, residence time, coalescence effects, and water carryover. The proper selection of nozzle type, nozzle manifold location, and nozzle distribution are of cardinal importance to avoid large droplets and under-/oversaturated areas, which would affect compressor mechanical and aerodynamic efficiency. Analytical and numerical studies are compared with experimental results. This paper provides a comprehensive treatment of parameters affecting droplet size and will be of value to gas turbine fog system designers and users.


2017 ◽  
Vol 44 (2) ◽  
pp. 93-99 ◽  
Author(s):  
O.W. Carter ◽  
E.P. Prostko ◽  
J.W. Davis

ABSTRACT The increase in herbicide-resistant weeds over the past decade has led to the introduction of crops that are resistant to auxin herbicides. Strict application procedures are required for the use of auxin herbicides in auxin-resistant crops to minimize off-target movement. One requirement for application is the use of nozzles that will minimize drift by producing coarse droplets. Generally, an increase in droplet size can lead to a reduction in coverage and efficacy depending upon the herbicide and weed species. In studies conducted in 2015 and 2016, two of the potential required auxin nozzle types [(AIXR11002 (coarse) and TTI11002 (ultra-coarse)] were compared to a conventional flat-fan drift guard nozzles [DG11002 (medium)] for weed control in peanut herbicide systems. Nozzle type did not influence annual grass or Palmer amaranth control in non-crop tests. Results from in-crop tests indicated that annual grass control was 5% to 6% lower when herbicides were applied with the TTI nozzle when compared to the AIXR or DG nozzles. However, Palmer amaranth control and peanut yield was not influenced by coarse-droplet nozzles. Peanut growers using the coarse-droplet nozzles need to be aware of potential reduced grass control.


1993 ◽  
Vol 7 (4) ◽  
pp. 799-807 ◽  
Author(s):  
James E. Hanks ◽  
Chester G. McWhorter

Spray droplet size of water and paraffinic oil was affected by air pressure, nozzle type, and liquid flow rate when applied with an ultralow volume (ULV), air-assist sprayer. Volume median diameters of water were generally larger than oil at constant air pressure and liquid flow rate. Droplet size decreased as air pressure increased, but increased as liquid flow rate increased. Volume median diameters of water droplets ranged from 41 to 838μm and from 16 to 457μm with oil when atomized at air pressures ranging from 14 to 84 kPa. Relative spans ranged from 1.2 to 18.0 and 2.0 to 7.2 for water and oil, respectively.


2011 ◽  
Author(s):  
Scott M Bretthauer ◽  
Robert E Wolf ◽  
Aaron G Hager ◽  
Bradley K Fritz
Keyword(s):  

1990 ◽  
Vol 4 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Joseph P. Reed ◽  
Franklin R. Hall ◽  
Donald L. Reichard

Field studies with flatfan, twinjet, flood and rotary atomizers were conducted in 1987 and 1988. The results indicated that tridiphane at 0.6 kg ai/ha plus atrazine at 1.7 kg ai/ha with 2.0 L/ha of soybean oil adjuvant was more effective in controlling giant foxtail and common lambsquarters when applied by the flatfan, twinjet, and rotary atomizers. Image analysis indicated that weed control by a postemergence herbicide was generally enhanced by better application coverage. Droplet size measurement by phase droplet particle/droplet analyzer demonstrated that the rotary atomizer produced a narrower range of droplet diameters between the Dv.1and Dv.9volumes than any of the other atomizers.


Sign in / Sign up

Export Citation Format

Share Document